×

The rate of convergence of option prices on the asset following a geometric Ornstein-Uhlenbeck process. (English) Zbl 1336.91079

Author’s abstract: The paper contains a discrete approximation scheme for the price of asset modeled by a geometric Ornstein-Uhlenbeck process. The idea is to consider Euler-type discrete-time approximations with the increments of the Wiener process replaced by i.i.d. bounded vanishing symmetric random variables. It is shown that the prelimit and limit markets are arbitrage-free, prelimit market is incomplete and admits the minimal martingale measure, and the limit market is complete. The rate of convergence of option prices is estimated using the classical results on the rate of convergence of the distributions of sums of nonidentically distributed random variables to the normal law.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
91B25 Asset pricing models (MSC2010)
60F05 Central limit and other weak theorems
Full Text: DOI

References:

[1] E. Alòs, A generalization of the Hull and White formula with applications to option pricing approximation, Finance Stoch., 10:353-365, 2006. · Zbl 1101.60044 · doi:10.1007/s00780-006-0013-5
[2] M. Briani, C. La Chioma, and R. Natalini, Convergence of numerical schemes for viscosity solutions to integrodifferential degenerate parabolic problems arising in financial theory, Numer. Math., 98:607-646, 2004. · Zbl 1065.65145 · doi:10.1007/s00211-004-0530-0
[3] M. Broadie, O. Glasserman, and S.J. Kou, Connecting discrete continuous path-dependent options, Finance Stoch., 3:55-82, 1999. · Zbl 0924.90007 · doi:10.1007/s007800050052
[4] L.-B. Chang and K. Palmer, Smooth convergence in the binomial model, Finance Stoch., 1:91-105, 2007. · Zbl 1142.91032
[5] N.J. Cutland, E. Kopp, and W. Willinger, From discrete to continuous financial models: New convergence results for option pricing, Math. Finance, 2:101-123, 1993. · Zbl 0884.90022 · doi:10.1111/j.1467-9965.1993.tb00081.x
[6] G. Deelstra and F. Delbaen, Long-term returns in stochastic interest rate models: Different convergence results, Appl. Stochastic Models Data Anal., 13(34):401-407, 1997. · Zbl 0914.60021 · doi:10.1002/(SICI)1099-0747(199709/12)13:3/4<401::AID-ASM334>3.3.CO;2-C
[7] G. Deelstra and F. Delbaen, Convergence of discretized stochastic (interest rate) processes with stochastic drift term, Appl. Stochastic Models Data Anal., 14:77-84, 1998. · Zbl 0915.60064 · doi:10.1002/(SICI)1099-0747(199803)14:1<77::AID-ASM338>3.0.CO;2-2
[8] D. Duffie and P. Protter, From discrete- to continuous- time finance: Weak convergence of the financial gain process, Math. Finance, 2:1-15, 1992. · Zbl 0900.90046 · doi:10.1111/j.1467-9965.1992.tb00022.x
[9] H. Egger and H.W. Engl, Tikhonov regularization applied to the inverse problem of option pricing: Convergence analysis and rates, Inverse Probl., 21:1027-1045, 2005. · Zbl 1205.65194 · doi:10.1088/0266-5611/21/3/014
[10] H. Föllmer and A. Schied, Stochastic Finance. An Introduction in Discrete Time, 2nd ed., Walter de Gruyter, Berlin, New York, 2004. · Zbl 1126.91028 · doi:10.1515/9783110212075
[11] I.G. Grama, On the rate of convergence in the central limit theorem for d-dimensional semimartingales, Stochastics Stochastics Rep., 44(3-4):131-152, 1993. · Zbl 0805.60043 · doi:10.1080/17442509308833846
[12] S. Heston and G. Zhou, On the rate of convergence of discrete-time contingent claims, Math. Finance, 10:53-75, 2000. · Zbl 1034.91041 · doi:10.1111/1467-9965.00080
[13] F. Hubalek and W. Schachermayer, When does convergence of asset price processes imply convergence of option prices, Math. Finance, 4:385-403, 1998. · Zbl 1020.91026 · doi:10.1111/1467-9965.00060
[14] O. Kudryavtsev and S. Levendorskiĭ, Fast and accurate pricing of barrier options under Lévy processes, Finance Stoch., 13:531-562, 2009. · Zbl 1194.91179 · doi:10.1007/s00780-009-0103-2
[15] R.S. Liptser and A.N. Shiryaev, On the rate of convergence in the central limit theorem for semimartingales, Theory Probab. Appl., 27:1-13, 1982. · Zbl 0499.60040 · doi:10.1137/1127001
[16] Y. Mishura, Diffusion approximation of recurrent schemes for financial markets, with application to the Ornstein-Uhlenbeck process, Opuscula Math., 35:99-116, 2015, available from: http://dx.doi.org/10.7494/OpMath.2015.35.1.99. · Zbl 1332.60049 · doi:10.7494/OpMath.2015.35.1.99
[17] Y. Mishura, The rate of convergence of option prices when general martingale discrete-time scheme approximates the Black-Scholes model, in A. Palczewski and L. Stettner (Eds.), Advances in Mathematics of Finance. 6th General AMaMeF and Banach Center Conference, Warsaw, June 10-15, 2013, BCP 104, 2015 (forthcoming). · Zbl 1338.60072
[18] V.V. Petrov, Sums of Independent Random Variables, Springer-Verlag, New York, Heidelberg, Berlin, 1975. · Zbl 0322.60043 · doi:10.1007/978-3-642-65809-9
[19] J.-L. Prigent, Weak Convergence of Financial Markets, Springer-Verlag, New York, Heidelberg, Berlin, 2003. · Zbl 1094.91002 · doi:10.1007/978-3-540-24831-6
[20] X. Su and W. Wang, Pricing options with credit risk in a reduced form model, J. Korean Stat. Soc., 41:437-444, 2012. · Zbl 1296.91269 · doi:10.1016/j.jkss.2012.01.006
[21] J.B. Walsh, The rate of convergence of the binomial tree scheme, Finance Stoch., 7:337-361, 2003. · Zbl 1062.91027 · doi:10.1007/s007800200094
[22] J.B.Walsh and O.D.Walsh, Embedding and the convergence of the binomial and trinomial tree schemes, in T.J. Lyons and T.S. Salisbury (Eds.), Numerical Methods and Stochastics, Fields Inst. Commun., Vol. 34, Amer. Math. Soc., Providence, RI, 2002, pp. 101-123. · Zbl 1081.60524
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.