×

Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory. (English) Zbl 1336.74031

Summary: Free vibrational study of symmetric angle-ply laminated annular circular plate of variable thickness including first order shear deformation theory using spline function approximation is studied. The equations of motion for the plates are derived using first order shear deformation theory. The solutions of displacement functions are assumed in a separable form to obtain a system of coupled differential equations in terms displacement and rotational functions and these functions are approximated by Bickley-type splines of order three. The vibration of 3- and 5-layered plates, made up of two types of materials and two types of boundary conditions are considered. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. Parametric studies are made of the variation of frequency parameter with respect to the radii ratio, circumferential node number, different sequence, number of lay-ups and other parameters characterizing the nature of variation of thickness for 3- and 5-layers.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K20 Plates
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Leissa AW (1969) Vibration of plates. NASA SP-160, USA
[2] Leissa AW (1977) Recent research in plate vibrations: classical theory. Shock Vib Dig 9:13-24 · doi:10.1177/058310247700901005
[3] Leissa AW (1987) Recent studies in plate vibrations: 1981-1985, Part I: classical theory. Shock Vib Dig 19:11-18 · doi:10.1177/058310248701900204
[4] Mindline RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J Appl Mech ASME 18:31-38 · Zbl 0044.40101
[5] Quintana MV, Nallim LG (2010) A variational approach to free vibration analysis of shear deformable polygonal plates with variable thickness. Appl Acoust 71:393-401 · doi:10.1016/j.apacoust.2009.12.002
[6] Zhou D, Lo SH (2012) Three-dimensional vibrations of annular thick plates with linearly varying thickness. Arch Appl Mech 82:111-135 · Zbl 1293.74220 · doi:10.1007/s00419-011-0543-y
[7] Semnani SJ, Attarnejad R, Firouzjaei RK (2013) Free vibration analysis of variable thickness thin plates by two-dimensional differential transform method. Acta Mech 224:1643-1658 · Zbl 1321.74042 · doi:10.1007/s00707-013-0833-2
[8] Malekzadeh PA (2007) A differential quadrature nonlinear free vibration analy-sis of laminated composite skew thin plates. Thin Wall Struct 45(2):237-250 · doi:10.1016/j.tws.2007.01.011
[9] Yongqiang L, Jian L (2007) Free vibration analysis of circular and annular sectorial thin plates using curve strip Fourier p-element. J Sound Vib 305(3):457-466 · doi:10.1016/j.jsv.2007.04.022
[10] Sharma S, Gupta US, Lal R (2010) Effect of pasternak foundation on axisym-metric vibration of polar orthotropic annular plates of varying thickness. J Vib Acoust 132(4):041001 · doi:10.1115/1.4001495
[11] Sapountzakis EJ, Mokos VG (2007) Vibration analysis of 3-D composite beam elements including warping and shear deformation effects. J Sound 306(3-5):818-834 · doi:10.1016/j.jsv.2007.06.021
[12] Della CN, Shu D (2007) Free vibration analysis of delaminated bimaterial beams. Compos Struct 80(2):212-220 · doi:10.1016/j.compstruct.2006.05.005
[13] Kang JH (2003) Three-dimensional vibration analysis of thick, circular and annular plates with nonlinear thickness variation. Comput Struct 81(16):1663-1675 · doi:10.1016/S0045-7949(03)00168-8
[14] Lal R, Sharma S (2004) Axisymmetric vibrations of non-homogeneous polar orthotropic annular plates of variable thickness. J Sound Vib 272(1-2):245-265 · doi:10.1016/S0022-460X(03)00329-8
[15] Liang B, Zhang SF (2007) Natural frequencies of circular annular plates with variable thickness by a new method. Int J Pres Ves Pip 84(5):293-297 · doi:10.1016/j.ijpvp.2006.12.001
[16] Bickley WG (1968) Piecewise cubic interpolation and two-point boundary problems. Comput J 11(2):206-208 · Zbl 0155.48004 · doi:10.1093/comjnl/11.2.206
[17] Mizusawa T, Kito H (1995) Vibration of cross-ply laminated cylindrical panels by the spline strip method. Comput Struct 57:253-265 · Zbl 0918.73342 · doi:10.1016/0045-7949(94)00613-8
[18] Viswanathan KK, Navaneethakrishnan PV (2003) Free vibration study of layered cylindrical shells by collocation with splines. J Sound Vib 260(5):807-827 · Zbl 1237.74217 · doi:10.1016/S0022-460X(02)00923-9
[19] Viswanathan KK, Kim KS, Lee KH, Lee JH (2010) Free vibration of layered circular cylindrical shells of Variable thickness using spline function approxi-mations. Math Probl Eng 2010:1-14 · Zbl 1202.74107 · doi:10.1155/2010/547956
[20] Viswanathan KK, Kim KS, Lee JH (2009) Asymmetric free vibrations of laminated annular cross-ply circular plates including the effects of shear deformation and rotary inertia: spline method. Forsch Ingenieurwes 73(4):205-217 · doi:10.1007/s10010-009-0106-3
[21] Toorani M, Lakis AA (2000) General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects. J Sound Vib 237(4):561-615 · doi:10.1006/jsvi.2000.3073
[22] Viswanathan KK, Sheen D (2009) Free vibration of layered annular circular plate of variable thickness using spline function approximation. Indian J Eng Mater S 16:433-448
[23] Whitney JM, Sun CT (1973) A higher order theory for extensional motion of laminated composites. J Sound Vib 30(1):85-97 · Zbl 0265.73049 · doi:10.1016/S0022-460X(73)80052-5
[24] Whitney JM (1973) Shear correction Factors for orthotropic laminates below static loads. J Appl Mech 40(1):302-304 · doi:10.1115/1.3422950
[25] Bert CW, Chen TLC (1978) Effect of shear deformation on vibration of anti-symmetric angle-ply laminated rectangular plates. Int J Solids Struct 14:465-473 · Zbl 0377.73067 · doi:10.1016/0020-7683(78)90011-2
[26] Perngjin FP (1995) A new look at shear correction factors and warping func-tions of anisotropic laminates. Int J Solids Struct 32(16):2295-2313 · Zbl 0919.73052 · doi:10.1016/0020-7683(94)00258-X
[27] Reddy JN (1978) Free vibration of antisymmetric angle-ply laminated plates including transverse shear deformation by the finite element method. J Sound Vib 66(4):565-576 · Zbl 0425.73052 · doi:10.1016/0022-460X(79)90700-4
[28] Ahlberg JH, Nilson EN, Walsh JL (1967) The Theory of Spline and their Application. Academic press, New York · Zbl 0158.15901
[29] Si W, Li C, Gong SW, Yong LK (2008) Spline-discretization-based free vibration analysis for orthotropic plates J Eng. Mech. 134:405-416
[30] Grigorenko AY, Efimova TL, Sokolova LV (2012) On the investigation of free vibrations of nonthin cylindrical shells of variable thickness by the spline-collocation method. J Math Sci 181(4):506-519
[31] Artur K (2012) Modified spline-based differential quadrature method applied to vibration analysis of truncated conical shells. Eng Comput 29(8):856-874 · doi:10.1108/02644401211271627
[32] Liu CF, Lee YT (2000) Finite element analysis of three-dimensional vibrations of thick circular and annular plates. J Sound Vib 233(1):63-80 · doi:10.1006/jsvi.1999.2791
[33] Featherston D, Barabasz M (2000) Loudspeaker response improvement using cone thickness variation. J Audio Eng Soc 48(12):1216-1220
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.