×

On the Cauchy problem for backward stochastic partial differential equations in Hölder spaces. (English) Zbl 1336.60125

Summary: This paper is concerned with the solution in Hölder spaces of the Cauchy problem for linear and semi-linear backward stochastic partial differential equations (BSPDEs) of super-parabolic type. The pair of unknown variables are viewed as deterministic spatial functionals which take values in Banach spaces of random (vector) processes. We define suitable functional Hölder spaces for them and give some inequalities among these Hölder norms. The existence, uniqueness as well as the regularity of solutions are proved for BSPDEs, which contain new assertions even for deterministic PDEs.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Bensoussan, A. (1983). Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochastics 9 169-222. · Zbl 0516.60072 · doi:10.1080/17442508308833253
[2] Bensoussan, A. (1992). Stochastic Control of Partially Observable Systems . Cambridge Univ. Press, Cambridge. · Zbl 0776.93094
[3] Bismut, J.-M. (1976). Théorie probabiliste du contrôle des diffusions. Mem. Amer. Math. Soc. 4 xiii+130. · Zbl 0323.93046 · doi:10.1090/memo/0167
[4] Bismut, J.-M. (1976). Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 14 419-444. · Zbl 0331.93086 · doi:10.1137/0314028
[5] Bismut, J.-M. (1978). An introductory approach to duality in optimal stochastic control. SIAM Rev. 20 62-78. · Zbl 0378.93049 · doi:10.1137/1020004
[6] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44 . Cambridge Univ. Press, Cambridge. · Zbl 0761.60052
[7] Dokuchaev, N. (2012). Backward parabolic Itô equations and the second fundamental inequality. Random Oper. Stoch. Equ. 20 69-102. · Zbl 1273.60075 · doi:10.1515/rose-2012-0003
[8] Du, K. and Meng, Q. (2010). A revisit to \(W^{n}_{2}\)-theory of super-parabolic backward stochastic partial differential equations in \(\mathbb{R}^{d}\). Stochastic Process. Appl. 120 1996-2015. · Zbl 1203.60083 · doi:10.1016/j.spa.2010.06.001
[9] Du, K., Qiu, J. and Tang, S. (2012). \(L^{p}\) theory for super-parabolic backward stochastic partial differential equations in the whole space. Appl. Math. Optim. 65 175-219. · Zbl 1266.60116 · doi:10.1007/s00245-011-9154-9
[10] Du, K. and Tang, S. (2012). Strong solution of backward stochastic partial differential equations in \(C^{2}\) domains. Probab. Theory Related Fields 154 255-285. · Zbl 1259.60068 · doi:10.1007/s00440-011-0369-0
[11] Du, K., Tang, S. and Zhang, Q. (2013). \(W^{m,p}\)-solution \((p\geq2)\) of linear degenerate backward stochastic partial differential equations in the whole space. J. Differential Equations 254 2877-2904. · Zbl 1259.35232 · doi:10.1016/j.jde.2013.01.013
[12] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1-71. · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[13] Gilbarg, D. and Trudinger, N. S. (2001). Elliptic Partial Differential Equations of Second Order . Springer, Berlin. · Zbl 1042.35002
[14] Hu, Y., Ma, J. and Yong, J. (2002). On semi-linear degenerate backward stochastic partial differential equations. Probab. Theory Related Fields 123 381-411. · Zbl 1011.60046 · doi:10.1007/s004400100193
[15] Hu, Y. and Peng, S. G. (1991). Adapted solution of a backward semilinear stochastic evolution equation. Stoch. Anal. Appl. 9 445-459. · Zbl 0736.60051 · doi:10.1080/07362999108809250
[16] Ladyženskaja, O. A., Solonnikov, V. A. and Ural’ceva, N. N. (1968). Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs 23 . Amer. Math. Soc., Providence, RI.
[17] Ma, J. and Yong, J. (1997). Adapted solution of a degenerate backward SPDE, with applications. Stochastic Process. Appl. 70 59-84. · Zbl 0911.60048 · doi:10.1016/S0304-4149(97)00057-4
[18] Ma, J. and Yong, J. (1999). On linear, degenerate backward stochastic partial differential equations. Probab. Theory Related Fields 113 135-170. · Zbl 0922.60053 · doi:10.1007/s004400050205
[19] Mikulevicius, R. (2000). On the Cauchy problem for parabolic SPDEs in Hölder classes. Ann. Probab. 28 74-103. · Zbl 1044.60050 · doi:10.1214/aop/1019160112
[20] Pardoux, É. and Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55-61. · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[21] Peng, S. G. (1992). Stochastic Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 30 284-304. · Zbl 0747.93081 · doi:10.1137/0330018
[22] Qiu, J. and Tang, S. (2012). Maximum principle for quasi-linear backward stochastic partial differential equations. J. Funct. Anal. 262 2436-2480. · Zbl 1238.60076 · doi:10.1016/j.jfa.2011.12.002
[23] Qiu, J., Tang, S. and You, Y. (2012). 2D backward stochastic Navier-Stokes equations with nonlinear forcing. Stochastic Process. Appl. 122 334-356. · Zbl 1230.60067 · doi:10.1016/j.spa.2011.08.010
[24] Rozovskiĭ, B. L. (1975). Stochastic partial differential equations. Mat. Sb. 96 314-341, 344.
[25] Tang, S. (1998). The maximum principle for partially observed optimal control of stochastic differential equations. SIAM J. Control Optim. 36 1596-1617 (electronic). · Zbl 0915.93068 · doi:10.1137/S0363012996313100
[26] Tang, S. (1998). A new partially observed stochastic maximum principle. In Proceedings of 37 th IEEE Control and Decision Conference ( Tampa , Florida , December 1998) 2353-2358. IEEE Press, Piscataway, NJ.
[27] Tang, S. (2005). Semi-linear systems of backward stochastic partial differential equations in \(\mathbb{R}^{n}\). Chin. Ann. Math. Ser. B 26 437-456. · Zbl 1077.60047 · doi:10.1142/S025295990500035X
[28] Yong, J. and Zhou, X. Y. (1999). Stochastic Controls : Hamiltonian Systems and HJB Equations . Springer, New York. · Zbl 0943.93002
[29] Zhou, X. Y. (1992). A duality analysis on stochastic partial differential equations. J. Funct. Anal. 103 275-293. · Zbl 0762.60055 · doi:10.1016/0022-1236(92)90122-Y
[30] Zhou, X. Y. (1993). On the necessary conditions of optimal controls for stochastic partial differential equations. SIAM J. Control Optim. 31 1462-1478. · Zbl 0795.93104 · doi:10.1137/0331068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.