×

On entropy, regularity and rigidity for convex representations of hyperbolic manifolds. (English) Zbl 1336.37024

The first result of the paper is the following:
Theorem A. Let \(\Gamma\) be a convex cocompact group of a \(\mathrm{CAT}(-1)\) space \(X\), \(\xi \in X\) and \(\rho: \Gamma \rightarrow \mathrm{PGL}(d,\mathbb R)\) be an irreducible convex representation with \(d\geq 3\). Then \(\alpha h_\rho \leq h_\Gamma\) and \(\alpha\mathbb H_\rho \leq h_\Gamma\), when \(\xi\) is \(\alpha\)-Hölder.
The main purpose of the paper is to extend the inequality \(\alpha h_{\rho_2} \leq h_{\rho_1}\) for convex representations. Here \(h_\rho\) is the entropy of \(\rho\) and \(\alpha\) is the exponent of the map \(\partial_\infty\Gamma \rightarrow \rho (R^d)\).

MSC:

37C45 Dimension theory of smooth dynamical systems
22A10 Analysis on general topological groups
57N15 Topology of the Euclidean \(n\)-space, \(n\)-manifolds (\(4 \leq n \leq \infty\)) (MSC2010)
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory

References:

[1] Abramov, L.M.: On the entropy of a flow. Dokl. Akad. Nauk. SSSR 128, 873-875 (1959) · Zbl 0094.10002
[2] Benoist, Y.: Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 7(1), 1-47 (1997) · Zbl 0947.22003 · doi:10.1007/PL00001613
[3] Benoist, Y.: Convexes divisibles I. In: Algebraic Groups and Arithmetic, pp. 339-374. Tata Inst. Fund. Res. (2004) · Zbl 1084.37026
[4] Benoist, Y.: Convexes divisibles III. Ann. Sci. École Norm. Sup. 38, 793-832 (2005) · Zbl 1085.22006
[5] Bourdon, M.: Structure conforme au bord et flot géodésique d’un CAT \[(-1)(-1)\]-espace. Enseign. Math. 2(41), 63-102 (1995) · Zbl 0871.58069
[6] Bourdon, M.: Sur le birraport au bord des CAT \[(-1)(-1)\]-espaces. Publ. Math. I.H.E.S. 83, 95-104 (1996) · Zbl 0883.53047
[7] Bowen, R., Ruelle, D.: The ergodic theory of axiom A flows. Invent. Math. 29, 181-202 (1975) · Zbl 0311.58010 · doi:10.1007/BF01389848
[8] Bridgeman, M., Canary, R., Labourie, F., Sambarino, A.: The pressure metric for Anosov representations. http://arxiv.org/abs/1301.7459 (2013) · Zbl 1360.37078
[9] Courtois, G.: Critical exponents and rigidity in negative curvature. In: Séminaires & Congrés, Géométries à courbure négative ou nulle, groupes discrets et rigidité, vol. 18, pp. 293-319. Société mathématique de France (2009) · Zbl 1198.53042
[10] Crampon, M.: Entropies of compact strictly convex projective manifolds. J. Modern Dyn. 3, 511-547 (2009) · Zbl 1189.37034 · doi:10.3934/jmd.2009.3.511
[11] Guichard, O.: In preparation · Zbl 0769.32008
[12] Guichard, O., Wienhard, A.: Anosov representations: domains of discontinuity and applications. Invent. Math. 190, 357-438 (2012) · Zbl 1270.20049 · doi:10.1007/s00222-012-0382-7
[13] Hamenstädt, U.: Time preserving conjugacies of geodesic flows. Ergodic Theor. Dyn. Syst. 12, 67-74 (1992) · Zbl 0766.58045 · doi:10.1017/S0143385700006581
[14] Hitchin, N.J.: Lie groups and Teichmüller space. Topology 31(3), 449-473 (1992) · Zbl 0769.32008 · doi:10.1016/0040-9383(92)90044-I
[15] Knapp, A.: Lie groups beyond an introduction, Birkhauser (2002) · Zbl 1075.22501
[16] Labourie, F.: Anosov flows, surface groups and curves in projective space. Invent. Math. 165, 51-114 (2006) · Zbl 1103.32007 · doi:10.1007/s00222-005-0487-3
[17] Ledrappier, F.: Structure au bord des variétés à courbure négative. Séminaire de théorie spectrale et géométrie de Grenoble 71, 97-122 (1994-1995) · Zbl 0931.53005
[18] Otal, J.-P.: Le spectre marqué des longueurs des surfaces à courbure négative. Ann. Math. 131, 151-162 (1990) · Zbl 0699.58018 · doi:10.2307/1971511
[19] Pollicott, M.: Symbolic dynamics for Smale flows. Am. J. Math. 109(1), 183-200 (1987) · Zbl 0628.58042 · doi:10.2307/2374558
[20] Sambarino, A.: Quantitative properties of convex representations. Comment. Math. Helv. 89(2), 443-488 (2014) · Zbl 1295.22016 · doi:10.4171/CMH/324
[21] Sigmund, K.: On the space of invariant measures for hyperbolic flows. Am. J. Math. 94, 31-37 (1972) · Zbl 0242.28014 · doi:10.2307/2373591
[22] Sullivan, D.: The densitiy at infinity of a discrete group of hyperbolic motions. Publ. Math. de l’I.H.E.S. 50, 171-202 (1979) · Zbl 0439.30034
[23] Tits, J.: Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconqe. J. Reine Angew. Math. 247, 196-220 (1971) · Zbl 0227.20015
[24] Yue, C.: The ergodic theory of discrete isometry groups on manifolds of variable negative curvature. Trans. A.M.S. 348(12), 4965-5005 (1996) · Zbl 0864.58047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.