×

Dynamics of a diffusive predator-prey model with modified Leslie-Gower term and Michaelis-Menten type prey harvesting. (English) Zbl 1336.35339

Summary: A diffusive predator-prey model with modified Leslie-Gower term and Michaelis-Menten type prey harvesting subject to the homogeneous Neumann boundary condition is considered. We obtain the local and global stability of constant equilibria by eigenvalue analysis and iteration technique. Choosing some parameter concerning with harvesting as Hopf bifurcation parameter, we conclude the existence of periodic solutions near positive constant equilibrium. Using the normal form and center manifold theory, and numerical simulations, we demonstrate our theoretical results of stability and direction of periodic solutions. We also derive the non-existence and existence of non-constant positive steady states by energy method and degree theory.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Holling, C.S.: The functional response of predator to prey density and its role in mimicry and population regulation. Mem. Ent. Sec. Can. 45, 1-60 (1965) · doi:10.4039/entm9745fv
[2] Xiao, D., Ruan, S.: Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493-506 (1999) · Zbl 0917.34029
[3] Peng, G.J., Jiang, Y.L., Li, C.P.: Bifurcations of a Holling-type II predator-prey system with constant rate harvesting. Int. J. Bifurc. Chaos Appl. Sci. Eng. 19, 2499-2514 (2009) · Zbl 1175.34062 · doi:10.1142/S021812740902427X
[4] Ji, L., Wu, C.: Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11, 2285-2295 (2010) · Zbl 1203.34070 · doi:10.1016/j.nonrwa.2009.07.003
[5] Xiao, D., Jennings, L.S.: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. J. Appl. Math. 65, 737-753 (2005) · Zbl 1094.34024
[6] Huang, J.C., Gong, Y.J., Ruan, S.G.: Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete Contin. Dyn. Syst., Ser. B 18(8), 2101-2121 (2013) · Zbl 1417.34092 · doi:10.3934/dcdsb.2013.18.2101
[7] Leard, B., Lewis, C., Rebaza, J.: Dynamics of ratio-dependent predator-prey models with non-constant harvesting. Discrete Contin. Dyn. Syst. Ser 1(2), 303-315 (2008) · Zbl 1151.37062 · doi:10.3934/dcdss.2008.1.303
[8] Lenzini, P., Rebaza, J.: Non-constant predator harvesting on ratio-dependent predator-prey models. Appl. Math. Sci. 4(16), 791-803 (2010) · Zbl 1189.37098
[9] Das, T., Mukherjee, R.N., Chaudhari, K.S.: Bioeconomic harvesting of a prey-predator fishery. J. Biol. Dyn. 3, 447-462 (2009) · Zbl 1342.91026 · doi:10.1080/17513750802560346
[10] Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting. J. Math. Anal. Appl. 398, 278-295 (2013) · Zbl 1259.34035 · doi:10.1016/j.jmaa.2012.08.057
[11] Clark, C.W.: Aggregation and fishery dynamics: a theoretical study of schooling and the purse seine tuna fisheries. Fish. Bull. 77, 317-337 (1979)
[12] Alaoui, M.A., Okiye, M.D.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069-1075 (2003) · Zbl 1063.34044 · doi:10.1016/S0893-9659(03)90096-6
[13] Song, X., Li, Y.: Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type II schemes and impulsive effect. Nonlinear Anal., Real World Appl. 9, 64-79 (2008) · Zbl 1142.34031 · doi:10.1016/j.nonrwa.2006.09.004
[14] Ji, C., Jiang, D., Shi, N.: Analysis of a predator-prey with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482-498 (2009) · Zbl 1190.34064 · doi:10.1016/j.jmaa.2009.05.039
[15] Nie, L., Teng, Z., Hu, L., Peng, J.: Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects. Nonlinear Anal., Real World Appl. 11, 1364-1373 (2010) · Zbl 1228.37058 · doi:10.1016/j.nonrwa.2009.02.026
[16] Aziz-Alaoui, M.A.: Study of a Leslie-Gower-type tritrophic population. Chaos Solitons Fractals 14, 1275-1293 (2002) · Zbl 1031.92027 · doi:10.1016/S0960-0779(02)00079-6
[17] Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14, 697-699 (2002) · Zbl 0999.92036 · doi:10.1016/S0893-9659(01)80029-X
[18] Li, X., Jiang, W.H., Shi, J.P.: Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model. IMA J. Appl. Math. 78(2), 287-306 (2013) · Zbl 1267.35236 · doi:10.1093/imamat/hxr050
[19] Zhou, J., Shi, J.P.: The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses. J. Math. Anal. Appl. 405(2), 618-630 (2013) · Zbl 1306.92054 · doi:10.1016/j.jmaa.2013.03.064
[20] Zhou, J.: Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes. J. Math. Anal. Appl. 389(2), 1380-1393 (2012) · Zbl 1234.35288 · doi:10.1016/j.jmaa.2012.01.013
[21] Zhou, J., Kim, C.G., Shi, J.P.: Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete Contin. Dyn. Syst. 34(9), 3875-3899 (2014) · Zbl 1304.35275 · doi:10.3934/dcds.2014.34.3875
[22] Yang, W.S.: Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response. Nonlinear Anal., Real World Appl. 14(3), 1323-1330 (2013) · Zbl 1262.35050 · doi:10.1016/j.nonrwa.2012.09.020
[23] Wang, M.X., Pang, P.Y.H.: Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model. Appl. Math. Lett. 21, 1215-1220 (2008) · Zbl 1171.34310 · doi:10.1016/j.aml.2007.10.026
[24] Hassard, B., Kazarinoff, N., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981) · Zbl 0474.34002
[25] Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246, 1944-1977 (2009) · Zbl 1203.35030 · doi:10.1016/j.jde.2008.10.024
[26] Chang, X.Y., Wei, J.J.: Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Math. Biosci. Eng. 10, 979-996 (2013) · Zbl 1273.35276 · doi:10.3934/mbe.2013.10.979
[27] Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131, 79-131 (1996) · Zbl 0867.35032 · doi:10.1006/jdeq.1996.0157
[28] Pang, P.Y.H., Wang, M.X.: Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200, 245-273 (2004) · Zbl 1106.35016 · doi:10.1016/j.jde.2004.01.004
[29] Nirenberg, L.: Topics in Nonlinear Functional Analysis. American Mathematical Society, Providence (2001) · Zbl 0992.47023
[30] Pang, P.Y.H., Wang, M.X.: Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 88(3), 135-157 (2004) · Zbl 1134.35373 · doi:10.1112/S0024611503014321
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.