×

Averaging methods of arbitrary order, periodic solutions and integrability. (English) Zbl 1336.34062

Authors’ abstract: In this paper we provide an arbitrary order averaging theory for higher dimensional periodic analytic differential systems. This result extends and improves results on averaging theory of periodic analytic differential systems, and it unifies many different kinds of averaging methods. Applying our theory to autonomous analytic differential systems, we obtain some conditions on the existence of limit cycles and integrability. For polynomial differential systems with a singularity at the origin having a pair of pure imaginary eigenvalues, we prove that there always exists a positive number \(N\) such that if its first \(N\) averaging functions vanish, then all averaging functions vanish, and consequently there exists a neighborhood of the origin filled with periodic orbits. Consequently if all averaging functions vanish, the origin is a center for \(n = 2\). Furthermore, in a punctured neighborhood of the origin, the system is \(C^1\) completely integrable for \(n > 2\) provided that each periodic orbit has a trivial holonomy. Finally we develop an averaging theory for studying limit cycle bifurcations and the integrability of planar polynomial differential systems near a nilpotent monodromic singularity and some degenerate monodromic singularities.

MSC:

34C29 Averaging method for ordinary differential equations
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34A05 Explicit solutions, first integrals of ordinary differential equations

References:

[1] Aziz, W.; Llibre, J.; Pantazi, C., Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254, 233-250 (2014) · Zbl 1295.34042
[2] Barreira, L.; Llibre, J.; Valls, C., Periodic orbits near equilibria, Comm. Pure Appl. Math., 63, 1225-1236 (2010) · Zbl 1206.34057
[3] Bogoliubov, N. N., On Some Statistical Methods in Mathematical Physics (1945), Izv. Akad. Nauk Ukr. SSR: Izv. Akad. Nauk Ukr. SSR Kiev · Zbl 0063.00496
[4] Bogoliubov, N. N.; Krylov, N., The Application of Methods of Nonlinear Mechanics in the Theory of Stationary Oscillations (1934), Ukrainian Acad. Sci.: Ukrainian Acad. Sci. Kiev, (Publ. 8)
[5] Brunella, M., Instability of equilibria in dimension three, Ann. Inst. Fourier (Grenoble), 48, 1345-1357 (1998) · Zbl 0930.37025
[6] Buică, A.; Françoise, J. P.; Llibre, J., Periodic solutions of nonlinear periodic differential systems with a small parameter, Commun. Pure Appl. Anal., 6, 103-111 (2007) · Zbl 1139.34036
[7] Buică, A.; Giné, J.; Llibre, J., A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter, Phys. D, 241, 528-533 (2012) · Zbl 1247.34060
[8] Buică, A.; Giné, J.; Llibre, J., Periodic solutions for nonlinear differential systems: the second order bifurcation function, Topol. Methods Nonlinear Anal., 43, 403-419 (2014) · Zbl 1360.34089
[9] Buică, A.; Llibre, J., Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math., 128, 7-22 (2004) · Zbl 1055.34086
[10] Chen, F. D.; Li, C.; Llibre, J.; Zhang, Z. H., A unified proof on the weak Hilbert 16th problem for \(n = 2\), J. Differential Equations, 221, 309-342 (2006) · Zbl 1098.34024
[11] Christopher, C.; Li, C., Limit Cycles of Differential Equations (2007), Birkhäuser: Birkhäuser Basel · Zbl 1359.34001
[12] Cima, A.; Gasull, A.; Mañosas, F., Limit cycles for vector fields with homogeneous components, Appl. Math., 24, 281-287 (1997) · Zbl 0880.34032
[13] Coll, B.; Gasull, A.; Prohens, R., Periodic orbits for perturbed non autonomous differential equations, Bull. Sci. Math., 136, 803-819 (2012) · Zbl 1268.34072
[14] Dumortier, F.; Llibre, J.; Artés, J. C., Qualitative Theory of Planar Differential Systems, Universitext (2006), Springer-Verlag: Springer-Verlag New York · Zbl 1110.34002
[15] Fatou, P., Sur le mouvement d’un système soumis à des forces à courte période, Bull. Soc. Math. France, 56, 98-139 (1928) · JFM 54.0834.01
[16] García, I. A.; Giné, J., The center problem via averaging method, J. Math. Anal. Appl., 351, 334-339 (2009) · Zbl 1171.34311
[17] Giné, J.; Llibre, J., Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Anal., 66, 1707-1721 (2007) · Zbl 1127.34025
[18] Giné, J.; Grau, M.; Llibre, J., Averaging theory at any order for computing periodic orbits, Phys. D, 250, 58-65 (2013) · Zbl 1267.34073
[19] Guirao, J. L.; Llibre, J.; Vera, J. A., Generalized van der Waals Hamiltonian: periodic orbits and \(C^1\) nonintegrability, Phys. Rev. E, 85, Article 036603 pp. (2012)
[20] Hale, J. K., Oscillations in Nonlinear Systems (1963), McGraw-Hill Book Co., Inc.: McGraw-Hill Book Co., Inc. New York-Toronto-London · Zbl 0115.07401
[21] Hale, J. K., Ordinary Differential Equations (1980), Robert E. Krieger Publishing Co., Inc.: Robert E. Krieger Publishing Co., Inc. Huntington, NY · Zbl 0433.34003
[22] Ilyashenko, Y.; Yakovenko, S., Lectures on Analytic Differential Equations (2008), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1186.34001
[23] Llibre, J.; Mereu, A. C.; Teixeira, M. A., Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Cambridge Philos. Soc., 148, 363-383 (2009) · Zbl 1198.34051
[24] Llibre, J.; Novaes, D. D.; Teixeira, M. A., Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27, 563-583 (2014) · Zbl 1291.34077
[25] Llibre, J.; Valls, C., Classification of the centers and their isochronicity for a class of polynomial differential systems of arbitrary degree, Adv. Math., 227, 472-493 (2011) · Zbl 1230.37028
[26] Llibre, J.; Yu, J.; Zhang, X., Limit cycles coming from the perturbation of 2-dimensional centers of vector fields in \(R^3\), Dynam. Systems Appl., 17, 625-636 (2008) · Zbl 1202.37072
[27] Llibre, J.; Yu, J.; Zhang, X., Limit cycles for a class of third-order differential equations, Rocky Mountain J. Math., 40, 581-594 (2010) · Zbl 1196.37087
[28] Llibre, J.; Zhang, X., Hopf bifurcation in higher dimensional differential systems via the averaging method, Pacific J. Math., 240, 321-341 (2009) · Zbl 1171.34027
[29] Llibre, J.; Zhang, X., On the Hopf-zero bifurcation of the Michelson system, Nonlinear Anal. Real World Appl., 12, 1650-1653 (2011) · Zbl 1220.34070
[30] Lyapunov, A. M., Stability of Motion, Math. Sci. Eng., vol. 30 (1966), Academic Press: Academic Press New York · Zbl 0161.06303
[31] Malkin, I. G., Some Problems of the Theory of Nonlinear Oscillations (1956), Gosudarstv. Izdat. Tehn.-Teor. Lit.: Gosudarstv. Izdat. Tehn.-Teor. Lit. Moscow, (in Russian) · Zbl 0070.08703
[32] Milnor, J. W., Topology from the Differentiable Viewpoint (1965), Univ. Virginia Press: Univ. Virginia Press Charlottesville · Zbl 0136.20402
[33] Mazzi, L.; Sabatini, M., A characterization of centers via first integrals, J. Differential Equations, 76, 222-237 (1988) · Zbl 0667.34036
[34] Peralta-Salas, D., Period function and normalizers of vector fields in \(R^n\) with \(n - 1\) first integrals, J. Differential Equations, 244, 1287-1303 (2008) · Zbl 1159.34036
[35] Pi, D. H.; Zhang, X., Limit cycles of differential systems via the averaging methods, Can. Appl. Math. Q., 17, 243-269 (2009) · Zbl 1362.34066
[36] Roseau, M., Vibrations non linéaires et théorie de la stabilité, Springer Tracts Nat. Philos., vol. 8 (1966), Springer-Verlag: Springer-Verlag Berlin-New York, (in French) · Zbl 0135.30603
[37] Sanders, J. A.; Verhulst, F.; Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci., vol. 59 (2007), Springer-Verlag: Springer-Verlag New York · Zbl 1128.34001
[38] Verhulst, F., Nonlinear Differential Equations and Dynamical Systems, Universitext (1991), Springer
[39] Ye, Y. Q., Theory of Limit Cycles, Transl. Math. Monogr., vol. 66 (1984), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI
[40] Ye, Y. Q., Qualitative Theory of Polynomial Differential Systems (1995), Shanghai Science & Technology Pub.: Shanghai Science & Technology Pub. Shanghai, (in Chinese) · Zbl 0854.34003
[41] Zhang, X., Liouvillian integrability of polynomial differential systems, Trans. Amer. Math. Soc., 368, 607-620 (2016) · Zbl 1331.34006
[42] Zhang, Z. F.; Ding, T. R.; Huang, W. Z.; Dong, Z. X., Qualitative Theory of Differential Equations, Transl. Math. Monogr., vol. 101 (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0779.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.