×

Integration operators between Hardy spaces on the unit ball of \(\mathbb{C}^n\). (English) Zbl 1336.32005

Let \(H\) be the space of holomorphic functions on the open unit ball \(\mathbb{B}\) in \(\mathbb{C}^n\). For \(g\in H\), let \(J_g:H\to H\) be the integral operator defined by \[ J_g(f)(z)=\int_0^1 f(tz)(Rg)(tz)\frac{dt}{t}, \] where \(R\) denotes the radial derivative.
The author obtains a complete characterization of the symbols \(g\) for which the operator \(J_g\) between Hardy spaces \(H^p\) is bounded, compact or in the Schatten class, respectively. Although these characterizations coincide with the well-known ones for the case \(n=1\), their proofs require different techniques in order to avoid certain specific tools used in the one-dimensional case as, for example, the factorization of Hardy spaces.
The main results proved by the author are the following:
1)
\(J_g:H^p\to H^p\), \(0<p<\infty\), is bounded (resp. compact) if and only if \(g\in \mathrm{BMOA}\) (resp. \(g\in \mathrm{VMOA}\)).
2)
Let \(0<p<q<\infty\) and \(\alpha=n/p-n/q\). If \(\alpha< 1\), \(J_g:H^p\to H^q\) is bounded (resp. compact) if and only if \(g\in \Lambda_\alpha\) (resp. \(g\in \lambda_\alpha\)), where \(\Lambda_\alpha\) is the Lipschitz space of order \(\alpha\) (resp. \(\lambda_\alpha\) is the little Lipschitz space of order \(\alpha\)). If \(\alpha=1\), then \(J_g\) is bounded if and only if \(Rg\in H^\infty\), and it is compact if and only if \(J_g=0\), that is, \(g\) is constant. If \(\alpha>1\), \(J_g\) is bounded if and only if \(J_g=0\).
3)
Let \(0<q<p<\infty\) and \(1/r=1/q-1/p\). The operator \(J_g:H^p\to H^q\) is bounded if and only if \(g\in H^r\), and it is compact if and only if it is bounded.
4)
For \(0<p<\infty\), let \(S_p(H^2)\) be the \(p\)-Schatten class of operators on \(H^2\). If \(p>n\), then \(J_g\in S_p(H^2)\) if and only if \(g\) is in the Besov space
\[ B_p=\Big\{f\in H\;:\; \big\|(1-|z|^2)^{1-(n+1)/p}Rf(z)\big\|_{L^p(\mathbb{B})}<\infty\Big\}. \] If \(p\leq n\), then \(J_g\in S_p(H^2)\) if and only if \(J_g=0\).

MSC:

32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
32A36 Bergman spaces of functions in several complex variables
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47B38 Linear operators on function spaces (general)

References:

[1] Ahern, P.; Bruna, J., Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of \(C^n\), Rev. Mat. Iberoam., 4, 123-153 (1988) · Zbl 0685.42008
[2] Aleksandrov, A., Function theory in the ball, (Khenkin, G. M.; Vitushkin, A. G., Several Complex Variables II (1994), Springer-Verlag: Springer-Verlag Berlin), 115-190 · Zbl 0614.32005
[3] Aleksandrov, A.; Peller, V., Hankel operators and similarity to a contraction, Int. Math. Res. Not., 6, 263-275 (1996) · Zbl 0871.47025
[4] Aleman, A.; Cima, J., An integral operator on \(H^p\) and Hardy’s inequality, J. Anal. Math., 85, 157-176 (2001) · Zbl 1061.30025
[5] Aleman, A.; Constantin, O., Spectra of integration operators on weighted Bergman spaces, J. Anal. Math., 109, 199-231 (2009) · Zbl 1207.47042
[6] Aleman, A.; Siskakis, A., An integral operator on \(H^p\), Complex Var., 28, 149-158 (1995) · Zbl 0837.30024
[7] Aleman, A.; Siskakis, A., Integration operators on Bergman spaces, Indiana Univ. Math. J., 46, 337-356 (1997) · Zbl 0951.47039
[8] Arsenovic, M., Embedding derivatives of \(M\)-harmonic functions into \(L^p\) spaces, Rocky Mountain J. Math., 29, 61-76 (1999) · Zbl 0928.31002
[9] Avetisyan, K.; Stevic, S., Extended Cesàro operators between different Hardy spaces, Appl. Math. Comput., 207, 346-350 (2009) · Zbl 1163.32004
[10] Calderón, A., Commutators of singular integral operators, Proc. Natl. Acad. Sci. USA, 53, 1092-1099 (1965) · Zbl 0151.16901
[11] Carleson, L., An interpolation problem for bounded analytic functions, Amer. J. Math., 80, 921-930 (1958) · Zbl 0085.06504
[12] Carleson, L., Interpolations by bounded analytic functions and the corona problem, Ann. of Math., 76, 547-559 (1962) · Zbl 0112.29702
[13] Coifman, R.; Rochberg, R.; Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103, 611-635 (1976) · Zbl 0326.32011
[14] Constantin, O., A Volterra-type integration operator on Fock spaces, Proc. Amer. Math. Soc., 140, 4247-4257 (2012) · Zbl 1282.30029
[15] Duren, P., Extension of a theorem of Carleson, Bull. Amer. Math. Soc., 75, 143-146 (1969) · Zbl 0184.30503
[16] Fefferman, C.; Stein, E., \(H^p\) spaces of several variables, Acta Math., 129, 137-193 (1972) · Zbl 0257.46078
[17] Garnett, J.; Latter, R., The atomic decomposition for Hardy spaces in several complex variables, Duke Math. J., 45, 815-845 (1978) · Zbl 0403.32006
[18] Gowda, M., Nonfactorization theorems in weighted Bergman and Hardy spaces on the unit ball of \(C^n\), Trans. Amer. Math. Soc., 277, 203-212 (1983) · Zbl 0526.32005
[19] Hörmander, L., \(L^p\) estimates for (pluri-)subharmonic functions, Math. Scand., 20, 65-78 (1967) · Zbl 0156.12201
[20] Hu, Z., Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc., 131, 2171-2179 (2003) · Zbl 1054.47023
[21] Jevtic, M., Embedding derivatives of \(M\)-harmonic Hardy spaces \(H^p\) into Lebesgue spaces, \(0 < p < 2\), Rocky Mountain J. Math., 26, 175-187 (1996) · Zbl 0851.46038
[22] Jevtic, M.; Pavlovic, M., Littlewood-Paley type inequalities for \(M\)-harmonic functions, Publ. Inst. Math., 64, 36-52 (1998) · Zbl 1009.32005
[23] Li, S.; Stevic, S., Riemann-Stieltjes operators on Hardy spaces in the unit ball of \(C^n\), Bull. Belg. Math. Soc. Simon Stevin, 14, 621-628 (2007) · Zbl 1136.47023
[24] Luecking, D. H., Trace ideal criteria for Toeplitz operators, J. Funct. Anal., 73, 345-368 (1987) · Zbl 0618.47018
[25] Luecking, D. H., Embedding derivatives of Hardy spaces into Lebesgue spaces, Proc. Lond. Math. Soc., 63, 595-619 (1991) · Zbl 0774.42011
[26] Marcinkiewicz, J.; Zygmund, A., On a theorem of Lusin, Duke Math. J., 4, 473-485 (1938) · JFM 64.0268.01
[27] Nowak, M., Function spaces in the unit ball of \(C^n\), (Complex Function Spaces. Complex Function Spaces, Mekrijärvi, 1999. Complex Function Spaces. Complex Function Spaces, Mekrijärvi, 1999, Univ. Joensuu Dept. Math. Rep. Ser., vol. 4 (2001)), 171-197, Joensuu · Zbl 1013.32005
[28] Ortega, J. M.; Fabrega, J., Pointwise multipliers and corona type decomposition in BMOA, Ann. Inst. Fourier (Grenoble), 46, 111-137 (1996) · Zbl 0840.32001
[29] Pau, J.; Peláez, J. A., Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Anal., 259, 2727-2756 (2010) · Zbl 1215.46019
[30] Peláez, J. A.; Rättya, J., Weighted Bergman Spaces Iduced by Rapidly Increasing Weights, Mem. Amer. Math. Soc., vol. 227(1066) (2014), vi+124 pp · Zbl 1308.30001
[31] Petermichl, S.; Treil, S.; Wick, B., Carleson potentials and the reproducing kernel thesis for embedding theorems, Illinois J. Math., 51, 1249-1263 (2007) · Zbl 1152.30036
[32] Pommerenke, C., Schlichte funktionen und analytische funktionen von beschränkter mittlerer oszillation, Comment. Math. Helv., 52, 591-602 (1977) · Zbl 0369.30012
[33] Rudin, W., Function Theory in the Unit Ball of \(C^n (1980)\), Springer: Springer New York · Zbl 0495.32001
[34] Smith, M. P., Testing Schatten class Hankel operators and Carleson embeddings via reproducing kernels, J. Lond. Math. Soc., 71, 172-186 (2005) · Zbl 1068.47031
[35] Stein, E., Singular Integrals and Differentiability Properties of Functions (1970), Princeton University Press: Princeton University Press Princeton, New Jersey · Zbl 0207.13501
[36] Stoll, M., A characterization of Hardy spaces on the unit ball of \(C^n\), J. Lond. Math. Soc., 48, 126-136 (1993) · Zbl 0808.32006
[37] Wu, Z., A new characterization for Carleson measures and some applications, Integral Equations Operator Theory, 71, 161-180 (2011) · Zbl 1248.47036
[38] Xia, J., On the Schatten class membership of Hankel operators on the unit ball, Illinois J. Math., 46, 913-928 (2002) · Zbl 1042.47014
[39] Xiao, J., Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. Lond. Math. Soc., 70, 199-214 (2004) · Zbl 1064.47034
[40] Xiao, J., Riemann-Stieltjes operators between weighted Bergman spaces, (Complex and Harmonic Analysis (2007), DEStech Publ., Inc.: DEStech Publ., Inc. Lancaster, PA), 205-212 · Zbl 1186.47034
[41] Zhao, R.; Zhu, K., Theory of Bergman spaces in the unit ball of \(C^n\), Mém. Soc. Math. Fr., 115 (2008) · Zbl 1176.32001
[42] Zhu, K., Spaces of Holomorphic Functions in the Unit Ball (2005), Springer-Verlag: Springer-Verlag New York · Zbl 1067.32005
[43] Zhu, K., Operator Theory in Function Spaces, Math. Surveys Monogr., vol. 138 (2007), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 1123.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.