×

Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mapping. (English) Zbl 1336.31003

Summary: In this paper, we first establish a Schwarz-Pick lemma for higher-order derivatives of planar harmonic mappings, and apply it to obtain univalency criteria. Then we discuss distortion theorems, Lipschitz continuity and univalency of planar harmonic mappings defined in the unit disk with linearly connected images.

MSC:

31A05 Harmonic, subharmonic, superharmonic functions in two dimensions
30C55 General theory of univalent and multivalent functions of one complex variable

References:

[1] Anderson, J. M., Becker, J., Gevirtz, J.: First-order univalence criteria interior chord-arc conditions, and quasidisks. Michigan Math. J., 56, 623-636 (2008) · Zbl 1177.30017 · doi:10.1307/mmj/1231770364
[2] Avkhadiev, F. G., Wirths, K. J.: Schwarz-Pick inequalities for derivatives of arbitrary order. Constr. Approx., 19, 265-277 (2003) · Zbl 1018.30018 · doi:10.1007/s00365-002-0503-4
[3] Avkhadiev, F. G., Wirths, K. J.: Schwarz-Pick Type Inequalities, Birkhäuser, Basel-Boston-Berlin, 2009 · Zbl 1168.30001 · doi:10.1007/978-3-0346-0000-2
[4] Becker, J.: Löwnersche differentialgleichung und quasikonform fortesezbare schlichte funktionen. J. Reine Angew. Math., 255, 23-43 (1972) · Zbl 0239.30015
[5] De Branges, L.: A proof of the Bieberbach conjecture. Acta Math., 154, 137-152 (1985) · Zbl 0573.30014 · doi:10.1007/BF02392821
[6] Chen, Sh., Ponnusamy, S., Wang, X.: Stable geometric properties of pluriharmonic and biholomorphic mappings, and Landau-Bloch’s theorem. Monatsh. Math., 177, 33-51 (2015) · Zbl 1315.31004 · doi:10.1007/s00605-014-0723-2
[7] Chen, Sh., Ponnusamy, S., Wang, X.: Univalence criteria and Lipschitz-type spaces on pluriharmonic mappings. Math. Scand., 116, 171-181 (2015) · Zbl 1319.31010
[8] Chen, Sh., Ponnusamy, S., Wang, X.: Properties of some classes of planar harmonic and planar biharmonic mappings. Complex Anal. Oper. Theory, 5, 901-916 (2011) · Zbl 1433.30062 · doi:10.1007/s11785-010-0061-x
[9] Chen, Sh., Ponnusamy, S., Wang, X.: Bloch constant and Landau’s theorems for planar p-harmonic mappings. J. Math. Anal. Appl., 373, 102-110 (2011) · Zbl 1202.31003 · doi:10.1016/j.jmaa.2010.06.025
[10] Chen, Sh., Ponnusamy, S., Wang, X.: Coefficient estimates and Landau-Bloch’s constant for planar harmonic mappings. Bull. Malaysian Math. Sciences Soc., 34, 255-265 (2011) · Zbl 1216.31001
[11] Chen, Sh., Ponnusamy, S., Wang, X.: Landau’s theorem for certain biharmonic mappings. Appl. Math. Comput., 208, 427-433 (2009) · Zbl 1159.31301 · doi:10.1016/j.amc.2008.12.016
[12] Chen, Sh., Rasila, A.: Schwarz-Pick type estimates of pluriharmonic mappings in the unit polydisk. Illinois J. Math., 58(4), 1015-1024 (2014) · Zbl 1327.32007
[13] Chuaqui, M., Hernández, R.: Univalent harmonic mappings and linearly connected domains. J. Math. Anal. Appl., 332, 1189-1194 (2007) · Zbl 1160.30004 · doi:10.1016/j.jmaa.2006.10.086
[14] Clunie, J. G., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math., 9, 3-25 (1984) · Zbl 0506.30007 · doi:10.5186/aasfm.1984.0905
[15] Colonna, F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J., 38, 829-840 (1989) · Zbl 0677.30020 · doi:10.1512/iumj.1989.38.38039
[16] Duren, P.: Harmonic Mappings in the Plane, Cambridge Univ. Press, Cambridge, 2004 · Zbl 1055.31001 · doi:10.1017/CBO9780511546600
[17] Gevirtz, J.: An upper bound for the John constant. Proc. Amer. Math. Soc., 83, 476-478 (1981) · Zbl 0477.30017 · doi:10.1090/S0002-9939-1981-0627673-0
[18] Gevirtz, J.: On extremal functions for John constants. J. London Math. Soc., 39, 285-298 (1989) · Zbl 0688.30013 · doi:10.1112/jlms/s2-39.2.285
[19] Hernández, R., Martín, M. J.: Stable geometric properties of analytic and harmonic functions. Proc. Cambridge Phil. Soc., 155, 343-359 (2013) · Zbl 1283.30028 · doi:10.1017/S0305004113000340
[20] Huang, X. Z.: Locally univalent harmonic mappings with linearly connected image domains (in Chinese). Chinese Ann. Math. Ser. A, 31, 625-630 (2010) · Zbl 1240.30110
[21] John, F.: A criterion for univalency brought up to date. Comm. Pure Appl. Math., 29, 293-295 (1976) · Zbl 0326.30010 · doi:10.1002/cpa.3160290304
[22] Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Amer. Math. Soc., 42, 689-692 (1936) · JFM 62.0891.02 · doi:10.1090/S0002-9904-1936-06397-4
[23] Pommerenke, Ch.: Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 · Zbl 0762.30001 · doi:10.1007/978-3-662-02770-7
[24] Ponnusamy, S., Rasila, A.: Planar harmonic and quasiregular mappings, Topics in Modern Function Theory: Chapter in CMFT, RMS-Lecture Notes Series, 19, 267-333 (2013) · Zbl 1318.30039
[25] Ruscheweyh, S.: Two remarks on bounded analytic functions. Serdica, Bulg. Math. Publ., 11, 200-202 (1985) · Zbl 0581.30009
[26] Sheil-Small, T.:, Constants for planar harmonic mappings. J. London Math. Soc., 42, 237-248 (1990) · Zbl 0731.30012 · doi:10.1112/jlms/s2-42.2.237
[27] Sobczak-Knec, M., Starkov, V. V., Szynal, J.: Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian. Ann. Univ. Mariae Curie-Skłodowska Sect. A, 65, 191-202 (2011) · Zbl 1250.30020
[28] Szász, O.: Ungleichungen für die Ableitungen einer Potenzreihe, die eine im Einheitskreis beschränkte Funktion darstellt. Math. Z., 8, 303-309 (1920) · JFM 47.0274.02 · doi:10.1007/BF01206532
[29] Yamashita, S.: On the John constant. Math. Z., 161, 185-188 (1978) · Zbl 0389.30004 · doi:10.1007/BF01214930
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.