×

Mathematical method in optical molecular imaging. (English) Zbl 1335.92050

Summary: Optical molecular imaging is an important technique of studies at molecular level and provides promising tools to non-invasively delineate in vivo physiological and pathological activities at cellular and molecular levels, and it has been widely used for diagnosing, managing diseases, metastasis detection and drug development. From a mathematical perspective, this paper mainly focuses on the forward problem and inverse problem in biological tissues based on the radiative transfer equation (RTE). The forward problem is accustomed to describing photon propagation in biological tissues and the inverse problem is used to reconstruct internal source distribution from the signal detected on the external surface. We also introduce the detailed derivation of the RTE and Robin boundary condition and discretization of the forward problem, along with the reconstruction methods and iterative solution algorithms summarized for the inverse problem. Finally, the current and future challenges of optical molecular imaging are discussed. This survey aims to construct a mathematical method, a state-of-the-art framework for optical molecular imaging, from which future research may benefit.

MSC:

92C55 Biomedical imaging and signal processing
68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] Weissleder R, Pittet M J. Imaging in the era of molecular oncology. Nature, 2008, 452: 580-589 · doi:10.1038/nature06917
[2] Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med, 2003, 9: 123-128 · doi:10.1038/nm0103-123
[3] Tian J. Molecular Imaging: Fundamentals and Application. Hangzhou: Zhejiang University Press, 2012
[4] Weissleder R, Mahmood U. Molecular imaging. Radiology, 2001, 219: 316-333 · doi:10.1148/radiology.219.2.r01ma19316
[5] Mssound T F, Gambhir S S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Gene Dev, 2003, 17: 545-580 · doi:10.1101/gad.1047403
[6] Cherry S R. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol, 2004, 49: R13-R48 · doi:10.1088/0031-9155/49/3/R01
[7] Ntziachristos V, Ripoll J, Wang L V, et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol, 2005, 23: 313-320 · doi:10.1038/nbt1074
[8] Weissleder R. Molecular imaging in cancer. Science, 2006, 312: 1168-1171 · doi:10.1126/science.1125949
[9] Willmann J K, van Bruggen N, Dinkelborg L M, et al. Molecular imaging in drug development. Nat Rev Drug Discov, 2008, 7: 591-607 · doi:10.1038/nrd2290
[10] Lv Y J. Research of inverse problems in bioluminescence tomography (in Chinese). Dissertation for the Doctoral Degree. Beijing: Institute of Automation, Chinese Academy of Sciences, 2007
[11] Arridge S R, Hebden J C. Optical imaging in medicine: II. Modelling and reconstruction. Phys Med Biol, 1997, 42: 841-853 · doi:10.1088/0031-9155/42/5/008
[12] Gibson A P, Hebden J C, Arridge S R. Recent advances in diffuse optical imaging. Phys Med Biol, 2005, 50: R1-R43 · doi:10.1088/0031-9155/50/4/R01
[13] Harrach B. On uniqueness in diffuse optical tomography. Inverse Probl, 2009, 25: 055010 · Zbl 1169.35388 · doi:10.1088/0266-5611/25/5/055010
[14] Boas D A, Brooks D H, Miller E L, et al. Imaging the body with diffuse optical tomography. IEEE Signal Proc Mag, 2001, 18: 57-75 · doi:10.1109/79.962278
[15] Arridge S R, Schotland J C. Optical tomography: forward and inverse problems. Inverse Probl, 2009, 25: 123010 · Zbl 1188.35197 · doi:10.1088/0266-5611/25/12/123010
[16] Contag C H, Bachmann M H. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng, 2002, 4: 235-260 · doi:10.1146/annurev.bioeng.4.111901.093336
[17] Wang G, Hoffman E A, McLennan G, et al. Development of the first bioluminescent CT scanner. Radiology, 2003, 229: 566
[18] Wang G, Shen H O, Cong W X, et al. Temperature-modulated bioluminescence tomography. Opt Express, 2006, 14: 7852-7871 · doi:10.1364/OE.14.007852
[19] Wang G, Cong W X, Durairaj K, et al. In vivo mouse studies with bioluminescence tomography. Opt Express, 2006, 14: 7801-7809 · doi:10.1364/OE.14.007801
[20] Cong W X, Wang G, Kumar D, et al. Practical reconstruction method for bioluminescence tomography. Opt Express, 2005, 13: 6756-6771 · doi:10.1364/OPEX.13.006756
[21] Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Med Phys, 2004, 31: 2289-2299 · doi:10.1118/1.1766420
[22] Jiang M, Zhou T, Cheng J T, et al. Image reconstruction for bioluminescence tomography from partial measurement. Opt Express, 2007, 15: 11095-11116 · doi:10.1364/OE.15.011095
[23] Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol, 2003, 13: 195-208
[24] Ntziachristos V, Tung C H, Bremer C, et al. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med, 2002, 8: 757-760 · doi:10.1038/nm729
[25] Ntziachristos V, Schellenberger E A, Ripoll J, et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Nat Acad Sci, 2004, 101: 12294-12299 · doi:10.1073/pnas.0401137101
[26] Deliolanis N, Lasser T, Hyde D, et al. Free-space fluorescence molecular tomography utilizing 360° geometry projections. Opt Lett, 2007, 32: 382-384 · doi:10.1364/OL.32.000382
[27] Tan Y, Jiang H. DOT guided fluorescence molecular tomography of arbitrarily shaped objects. Med Phys, 2008, 35: 5703-5707 · doi:10.1118/1.3020594
[28] Zhang B, Liu S Q, Cao X, et al. Fluorescence tomography reconstruction with simultaneous positron emission tomography priors. IEEE Trans Multimedia, 2013, 15: 1031-1038 · doi:10.1109/TMM.2013.2244205
[29] Robertson R, Germanos M S, Li C, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol, 2009, 54: N355-N365 · doi:10.1088/0031-9155/54/16/N01
[30] Li C Q, Mitchell G S, Cherry S R. Cerenkov luminescence tomography for small-animal imaging. Opt Lett, 2010, 35: 1109-1111 · doi:10.1364/OL.35.001109
[31] Hu Z H, Liang J M, Yang W D, et al. Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation. Opt Express, 2010, 18: 24441-24450 · doi:10.1364/OE.18.024441
[32] Spinelli A E, D’Ambrosio D, Calderan L, et al. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol, 2010, 55: 483-495 · doi:10.1088/0031-9155/55/2/010
[33] Ruggiero A, Holland J P, Lewis J S, et al. Cerenkov luminescence imaging of medical isotopes. J Nucl Med, 2010, 51: 1123-1130 · doi:10.2967/jnumed.110.076521
[34] Xu Y D, Chang E, Liu H G, et al. Proof-of-concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging. J Nucl Med, 2012, 53: 312-317 · doi:10.2967/jnumed.111.094623
[35] Klose A D, Ntziachristos V, Hielscher A. The inverse source problem based on the radiative transfer equation in optical molecular imaging. J Comput Phys, 2005, 202: 323-345 · Zbl 1061.65143 · doi:10.1016/j.jcp.2004.07.008
[36] Wang L V, Wu H I. Biomedical Optics: Principles and Imaging. Wiley-Interscience, 2007
[37] Rice B W, Cable M D, Nelson M B. In vivo imaging of light-emitting probes. J Biomed Opt, 2001, 6: 432-440 · doi:10.1117/1.1413210
[38] Chandrasekhar S. Radiative Transfer. Oxford: Clarendon Press, 1950 · Zbl 0037.43201
[39] Born M, Wolf E. Principals of Optics. 7th ed. Cambridge: Cambridge University Press, 1999 · Zbl 1430.78001 · doi:10.1017/CBO9781139644181
[40] Qin C H. Research of bioluminescence tomography based on meshless method and construction of BLT prototype system (in Chinese). Dissertation for the Doctoral Degree. Beijing: Institute of Automation, Chinese Academy of Sciences, 2009
[41] Ishimaru A. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1977
[42] Toublanc D. Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations. Appl Optics, 1996, 35: 3270-3274 · doi:10.1364/AO.35.003270
[43] Schweiger M, Arridge S R, Hiraoka M, et al. The finite element method for the propagation of light in scattering media: boundary and source conditions. Med Phys, 1995, 22: 1779-1792 · doi:10.1118/1.597634
[44] Wang L V, Jacques S L, Zheng L Q. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Comput Meth Prog Bio, 1995, 47: 131-146 · doi:10.1016/0169-2607(95)01640-F
[45] Boas D, Culver J, Stott J, et al. Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt Express, 2002, 10: 159-170 · doi:10.1364/OE.10.000159
[46] Li H, Tian J, Zhu F, et al. A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. Acad Radiol, 2004, 11: 1029-1038 · doi:10.1016/j.acra.2004.05.021
[47] Ren N N, Liang J M, Qu X C, et al. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt Express, 2010, 18: 6811-6823 · doi:10.1364/OE.18.006811
[48] Gu X J, Xu Y, Jiang H B. Mesh-based enhancement schemes in diffuse optical tomography. Med Phys, 2003, 30: 861-869 · doi:10.1118/1.1566389
[49] Culver J P, Choe R, Holboke M J, et al. Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys, 2003, 30: 235-247 · doi:10.1118/1.1534109
[50] Qin C H, Tian J, Yang X, et al. Galerkin-based meshless methods for photon transport in the biological tissue. Opt Express, 2008, 16: 20317-20333 · doi:10.1364/OE.16.020317
[51] Lv Y J, Tian J, Cong W X, et al. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt Express, 2006, 14: 8211-8223 · doi:10.1364/OE.14.008211
[52] Razansky D, Ntziachristos V. Hybrid photoacoustic fluorescence molecular tomography using finite-element-based inversion. Med Phys, 2007, 34: 4293-4301 · doi:10.1118/1.2786866
[53] Wang D F, Liu X, Chen Y P, et al. A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media. IEEE Trans Inf Technol Biomed, 2009, 13: 766-773 · doi:10.1109/TITB.2009.2015144
[54] Zhong J H, Tian J, Yang X, et al. Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann Biomed Eng, 2011, 39: 1728-1735 · doi:10.1007/s10439-011-0261-1
[55] Qin, C. H.; Tian, J.; Lv, Y. J.; etal., Three-dimensional bioluminescent source reconstruction method based on nodes of adaptive FEM, 69161k (2008), San Diego
[56] Tian J, Bai J, Yan X P, et al. Multimodality molecular imaging. IEEE Eng Med Biol, 2008, 27: 48-57 · doi:10.1109/MEMB.2008.923962
[57] Cong A X, Wang G. Multispectral bioluminescence tomography: methodology and simulation. Int J Biomed Imag, 2006, 2006: 57614 · doi:10.1155/IJBI/2006/57614
[58] Dehghani H, Davis S C, Pogue B W. Spectrally resolved bioluminescence tomography using the reciprocity approach. Med Phys, 2008, 35: 4863-4871 · doi:10.1118/1.2982138
[59] Gong R F, Wang G, Cheng X L, et al. A novel approach for studies of multispectral bioluminescence tomography. Numer Math, 2010, 115: 553-583 · Zbl 1190.92021 · doi:10.1007/s00211-010-0293-8
[60] Lv Y J, Tian J, Cong W X, et al. Spectrally resolved bioluminescence tomography with adaptive finite element: methodology and simulation. Phys Med Biol, 2007, 52: 4497-4512 · doi:10.1088/0031-9155/52/15/009
[61] Svenmarker P, Xu C T, Liu H C, et al. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles. Appl Phys Lett, 2014, 104: 073703 · doi:10.1063/1.4863960
[62] Feng J C, Jia K B, Yan G R, et al. An optimal permissible source region strategy for multispectral bioluminescence tomography. Opt Express, 2008, 16: 15640-15654 · doi:10.1364/OE.16.015640
[63] Naser M A, Patterson M S. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties. Biomed Opt Express, 2010, 1: 512-526 · doi:10.1364/BOE.1.000512
[64] Qin C H, Zhu S P, Feng J C, et al. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method. J Biophoton, 2011, 4: 824-839 · doi:10.1002/jbio.201100049
[65] Naser M A, Patterson M S. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region. Biomed Opt Express, 2011, 2: 168-184
[66] Lu Y, Machado H B, Douraghy A, et al. Experimental bioluminescence tomography with fully parallel radiativetransfer-based reconstruction framework. Opt Express, 2009, 17: 16681-16695 · doi:10.1364/OE.17.016681
[67] Guo W, Jia K B, Zhang Q, et al. Sparse reconstruction for bioluminescence tomography based on the semigreedy method. Comput Math Method Med, 2012, 2012: 494808 · Zbl 1401.92125 · doi:10.1155/2012/494808
[68] Xu Z, Bai J. Analysis of finite-element-based methods for reducing the ill-posedness in the reconstruction of fluorescence molecular tomography. Prog Nat Sci, 2009, 19: 501-509 · doi:10.1016/j.pnsc.2008.06.022
[69] Han R Q, Liang J M, Qu X C, et al. A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography. Opt Express, 2009, 17: 14481-14494 · doi:10.1364/OE.17.014481
[70] Guo H B, Hou Y Q, He XW. Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation. J Innov Opt Heal Sci, 2014, 7: 1350057 · doi:10.1142/S1793545813500570
[71] Lv Y J, Tian J, Cong W X, et al. A multilevel adaptive finite element algorithm for bioluminescence tomography. Opt Express, 2006, 14: 8211-8223 · doi:10.1364/OE.14.008211
[72] Yu J J, He X W, Geng G H, et al. Hybrid multilevel sparse reconstruction for a whole domain bioluminescence tomography using adaptive finite element. Comput Math Method Med, 2013, 2013: 548491
[73] Zhang B, Yang X, Qin C H, et al. A trust region method in adaptive finite element framework for bioluminescence tomography. Opt Express, 2010, 18: 6477-6491 · doi:10.1364/OE.18.006477
[74] He X W, Hou Y B, Chen D F, et al. Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method. Int J Biomed Imag, 2011, 2011: 203537 · doi:10.1155/2011/203537
[75] Tikhonov A N, Aresenin V Y. Solutions of ill-posed Problems. Washington DC: V. H. Winston and Sons, 1977 · Zbl 0354.65028
[76] Cao N, Nehorai A, Jacobs M. Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization. Opt Express, 2007, 15: 13695-13708 · doi:10.1364/OE.15.013695
[77] Gao H, Zhao H K. Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization. Opt Express, 2010, 18: 1854-1871 · doi:10.1364/OE.18.001854
[78] Zeng J S, Fang J, Xu Z B. Sparse SAR imaging based on L1/2 regularization. Sci China Inf Sci, 2012, 55: 1755-1775 · Zbl 1270.94025 · doi:10.1007/s11432-012-4632-5
[79] Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289-1306 · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[80] Yu J J, Liu F, Wu J, et al. Fast source reconstruction for bioluminescence tomography based on sparse regularization. IEEE Trans Biomed Eng, 2010, 57: 2583-2586 · doi:10.1109/TBME.2010.2059024
[81] Zhong, J. H.; Tian, J.; Yang, X.; etal., L1-regularized Cerenkov luminescence tomography with a SP3 method and CT fusion, 6158-6161 (2011), Boston
[82] Zhang Q T, Chen X L, Xu X C, et al. Comparative studies of lp-regularization-based reconstruction algorithms for bioluminescence tomography. Biomed Opt Express, 2012, 3: 2816-2836
[83] Yi H J, Chen D F, Li W, et al. Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: a comparative study. J Biomed Opt, 2013, 18: 56013 · doi:10.1117/1.JBO.18.5.056013
[84] Cao X, Zhang B, Wang X, et al. An adaptive Tikhonov regularization method for fluorescence molecular tomography. Med Biol Eng Comput, 2013, 51: 849-858 · doi:10.1007/s11517-013-1054-5
[85] Shi J W, Liu F, Zhang G L, et al. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm. J Biomed Opt, 2014, 19: 046018 · doi:10.1117/1.JBO.19.4.046018
[86] Ye J Z, Chi C W, Xue Z W, et al. Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method. Biomed Opt Express, 2014, 5: 387-406 · doi:10.1364/BOE.5.000387
[87] Zhu D W, Li C Q. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement. Phys Med Biol, 2014, 59: 2901-2912 · doi:10.1088/0031-9155/59/12/2901
[88] Feng J C, Qin C H, Jia K B, et al. Total variation regularization for bioluminescence tomography with the split Bregman method. Appl Optics, 2012, 51: 4501-4512 · doi:10.1364/AO.51.004501
[89] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D, 1992, 60: 259-268 · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[90] Zhu Y G, Shi Y Y. A fast method for reconstruction of total-variation MR images with a periodic boundary condition. IEEE Signal Proc Lett, 2013, 20: 291-294 · doi:10.1109/LSP.2013.2245502
[91] Yao L, Jiang H B. Enhancing finite element-based photoacoustic tomography using total variation minimization. Appl Optics, 2011, 50: 5031-5041 · doi:10.1364/AO.50.005031
[92] Gao H, Zhao H K. Multilevel bioluminescence tomography based on radiative transfer equation. Part 2: total variation and l1 data fidelity. Opt Express, 2010, 18: 2894-2912 · doi:10.1364/OE.18.002894
[93] Dutta J, Ahn S, Li C Q, et al. Joint L1 and total variation regularization for fluorescence molecular tomography. Phys Med Biol, 2012, 57: 1459-1476 · doi:10.1088/0031-9155/57/6/1459
[94] Jin, W. M.; He, Y. H., Iterative reconstruction for bioluminescence tomography with total variation regularization, 855333 (2012), Beijing
[95] Cabello J, Torres-Espallardo I, Gillam J E, et al. PET reconstruction from truncated projections using total-variation regularization for hadron therapy monitoring. IEEE Trans Nucl Sci, 2013, 60: 3364-3372 · doi:10.1109/TNS.2013.2278121
[96] Schweiger M, Arridge S R, Nissilä I. Gauss-Newton method for reconstruction in diffusion optical tomography.Phys Med Biol, 2005, 50: 2365-2386 · doi:10.1088/0031-9155/50/10/013
[97] He X W, Liang J M, Wang X R, et al. Sparse regularization for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method. Opt Express, 2010, 18: 24825-24841 · doi:10.1364/OE.18.024825
[98] Freiberger M, Clason C, Scharfetter H. Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach. Appl Optics, 2010, 49: 3741-3747 · doi:10.1364/AO.49.003741
[99] Zhang Q T, Zhao H, Chen D F, et al. Source sparsity based primal-dual interior-point method for three-dimensional bioluminescence tomography. Opt Commun, 2011, 284: 5871-5876 · doi:10.1016/j.optcom.2011.07.071
[100] Han D, Tian J, Zhu S P, et al. A fast reconstruction for fluorescence molecular tomography with sparsity regularization. Opt Express, 2010, 18: 8630-8646 · doi:10.1364/OE.18.008630
[101] Wu P, Liu K, Zhang Q, et al. Detection of mouse liver cancer via a parallel iterative shrinkage method in hybrid opitcal/microcomputed in tomography imaging. J Biomed Opt, 2012, 17: 126012 · doi:10.1117/1.JBO.17.12.126012
[102] Goldstein T, Osher S. The Split Bregman method for L1 regularized problems. SIAM J Imag Sci, 2009, 2: 323-343 · Zbl 1177.65088 · doi:10.1137/080725891
[103] Abascal J F, Chamorro-Servent J, Aguirre J, et al. Fluorescence diffuse optical tomography using the split Bregman method. Med Phys, 2011, 38: 6275-6284 · doi:10.1118/1.3656063
[104] Zhang H, Cheng L Z, Li J P. Reweighted minimization model for MR image reconstruction with split Bregman method. Sci China Inf Sci, 2012, 55: 2109-2118 · Zbl 1270.94028 · doi:10.1007/s11432-011-4328-2
[105] Nikazad T, Davidi R, Herman G T. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inverse Probl, 2012, 28: 035005 · Zbl 1261.94014 · doi:10.1088/0266-5611/28/3/035005
[106] Ding X T, Wang K, Jie B, et al. Probability method for Cerenkov luminescence tomography based on conformance error minimization. Biomed Opt Express, 2014, 5: 2091-2112 · doi:10.1364/BOE.5.002091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.