×

A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. (English) Zbl 1335.65047

A local convergence analysis for at least five-order variants of Chebyshev-Halley-type methods in order to approximate a solution of a nonlinear equation is conducted. Conditions which contain up to the first derivative are invented. The dynamical analyses of these methods are also given. Results of numerical experiments are exposed.

MSC:

65H05 Numerical computation of solutions to single equations
Full Text: DOI

References:

[1] Amat, S., Busquier, S.: Plaza, Dynamics of the King and Jarratt iterations. Aequationes Math. 69(3), 212-223 (2005) · Zbl 1068.30019 · doi:10.1007/s00010-004-2733-y
[2] Amat, S., Busquier, S.: Plaza, Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366(1), 24-32 (2010) · Zbl 1187.65050 · doi:10.1016/j.jmaa.2010.01.047
[3] Amat, M.A., Hernández, N., Romero, A.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164-174 (2008) · Zbl 1157.65369 · doi:10.1016/j.amc.2008.08.050
[4] Argyros, I.K.: Convergence and Application of Newton-type Iterations. Springer (2008) · Zbl 1153.65057
[5] Argyros, I.K, Hilout, S.: Numerical methods in Nonlinear Analysis. World Scientific Publ. Comp, New Jersey (2013) · Zbl 1262.65061
[6] Behl, R.: Development and analysis of some new iterative methods for numerical solutions of nonlinear equations (PhD Thesis). Punjab University (2013) · Zbl 1068.30019
[7] Bruns, D.D., Bailey, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci 32, 257-264 (1977) · doi:10.1016/0009-2509(77)80203-0
[8] Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: The Halley method. Computing 169-184, 44 (1990) · Zbl 0701.65043
[9] Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 45(4), 355-367 (1990) · Zbl 0714.65061 · doi:10.1007/BF02238803
[10] Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. The Scientific World Journal Volume Article ID 780153 (2013) · Zbl 1305.70018
[11] Chun, C.: Some improvements of Jarratt’s method with sixth-order convergence. Appl Math. Comput 190(2), 1432-1437 (1990) · Zbl 1122.65329 · doi:10.1016/j.amc.2007.02.023
[12] Cordero, A., García-Maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842-848 (2013) · Zbl 1370.37155
[13] Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev-Halley type methods. Appl. Math. Comput. 219, 8568-8583 (2013) · Zbl 1288.65065 · doi:10.1016/j.amc.2013.02.042
[14] Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686-698 (2007) · Zbl 1122.65350 · doi:10.1016/j.amc.2007.01.062
[15] Ezquerro, J. A., Hernández, M.A.: Recurrence relations for Chebyshev-type methods. Appl. Math. Optim. 41(2), 227-236 (2000) · Zbl 0952.47050 · doi:10.1007/s002459911012
[16] Ezquerro, J. A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325-342 (2009) · Zbl 1170.65038 · doi:10.1007/s10543-009-0226-z
[17] Ezquerro, J. A., Hernández, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl. 303, 591-601 (2005) · Zbl 1079.65064 · doi:10.1016/j.jmaa.2004.08.057
[18] Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Applic. 36(7), 1-8 (1998) · Zbl 0933.65063 · doi:10.1016/S0898-1221(98)00168-0
[19] Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21-31 (1991) · Zbl 0719.65093 · doi:10.1093/imanum/11.1.21
[20] Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Applic. 41(3-4), 433-455 (2001) · Zbl 0985.65058 · doi:10.1016/S0898-1221(00)00286-8
[21] Hernández, M.A., Salanova, M.A.: Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1, 29-40 (1999) · Zbl 0940.65064
[22] Jarratt, P.: Some fourth order multipoint methods for solving equations. Math. Comput. 20(95), 434-437 (1966) · Zbl 0229.65049 · doi:10.1090/S0025-5718-66-99924-8
[23] Kou, J., Li, Y.: An improvement of the Jarratt method. Appl. Math. Comput. 189, 1816-1821 (2007) · Zbl 1122.65338 · doi:10.1016/j.amc.2006.12.062
[24] Li, D., Liu, P., Kou, J.: An improvement of the Chebyshev-Halley methods free from second derivative. Appl. Math. Comput. 235, 221-225 (2014) · Zbl 1334.65086 · doi:10.1016/j.amc.2014.02.083
[25] Magreñán, Á. A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29-38 (2014) · Zbl 1334.65083 · doi:10.1016/j.amc.2014.01.037
[26] Magreñán, Á.A.: A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 248, 215-224 (2014) · Zbl 1338.65277 · doi:10.1016/j.amc.2014.09.061
[27] Parhi, S.K., Gupta, D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206(2), 873-887 (2007) · Zbl 1119.47063 · doi:10.1016/j.cam.2006.08.027
[28] Rall, L.B.: Computational solution of nonlinear operator equations. In: Robert E. Krieger (ed.). New York (1979) · Zbl 0476.65033
[29] Ren, H., Wu, Q., Bi, W.: New variants of Jarratt method with sixth-order convergence. Numer. Algorithm. 52(4), 585-603 (2009) · Zbl 1187.65052 · doi:10.1007/s11075-009-9302-3
[30] Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Pol. Acad. Sci., Banach. Ctr. Publ. 3, 129-142 (1978) · Zbl 0378.65029
[31] Traub, J.F.: Iterative methods for the solution of equations. Prentice- Hall Series in Automatic Computation Englewood Cliffs, N. J. (1964) · Zbl 1119.47063
[32] Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algorithm. 57, 441-456 (2011) · Zbl 1234.65030 · doi:10.1007/s11075-010-9438-1
[33] Kou, J., Wang, X.: Semilocal convergence of a modified multi-point Jarratt method in Banach spaces under general continuity conditions. Numer. Algorithm. 60, 369-390 (2012) · Zbl 1250.65074 · doi:10.1007/s11075-011-9519-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.