×

Convergence of Markovian stochastic approximation with discontinuous dynamics. (English) Zbl 1334.90090

Summary: This paper is devoted to the convergence analysis of stochastic approximation algorithms of the form \(\theta_{n+1} = \theta_n + \gamma_{n+1} H_{\theta_n}({X_{n+1}})\), where \({\left\{ {\theta}_n, n \in {\mathbb{N}} \right\}}\) is an \({\mathbb{R}}^d\)-valued sequence, \({\left\{ {\gamma}_n, n \in {\mathbb{N}} \right\}}\) is a deterministic stepsize sequence, and \({\left\{ {X}_n, n \in {\mathbb{N}} \right\}}\) is a controlled Markov chain. We study the convergence under weak assumptions on smoothness-in-\(\theta\) of the function \(\theta \mapsto H_{\theta}({x})\). It is usually assumed that this function is continuous for any \(x\); in this work, we relax this condition. Our results are illustrated by considering stochastic approximation algorithms for (adaptive) quantile estimation and a penalized version of the vector quantization.

MSC:

90C15 Stochastic programming
65C40 Numerical analysis or methods applied to Markov chains

References:

[1] S. Andradóttir, {\it A stochastic approximation algorithm with varying bounds}, Oper. Res., 43 (1995), pp. 1037-1048. · Zbl 0852.90115
[2] C. Andrieu and E. Moulines, {\it On the ergodicity property of some adaptive MCMC algorithms}, Ann. Appl. Probab., 16 (2006), pp. 1462-1505. · Zbl 1114.65001
[3] C. Andrieu, E. Moulines, and P. Priouret, {\it Stability of stochastic approximation under verifiable conditions}, SIAM J. Control Optim., 44 (2005), pp. 283-312. · Zbl 1083.62073
[4] C. Andrieu, V. B. Tadić, and M. Vihola, {\it On the stability of some controlled Markov chains and its applications to stochastic approximation with Markovian dynamic}, Ann. Appl. Probab., 25 (2015), pp. 1-45. · Zbl 1317.65004
[5] C. Andrieu and M. Vihola, {\it Markovian stochastic approximation with expanding projections}, Bernouilli, 20 (2014), pp. 545-585. · Zbl 1316.62124
[6] M. A. Arcones, {\it Asymptotic theory for m-estimators over a convex kernel}, Econometric Theory, 14 (1998), pp. 387-422.
[7] O. Bardou, N. Frikha, and G. Pagès, {\it Computing VaR and CVaR using stochastic approximation and adaptive unconstraines importance sampling}, Monte Carlo Methods Appl., 15 (2009), pp. 173-210. · Zbl 1185.91091
[8] M. Benaïm, J. C. Fort, and G. Pagès, {\it Convergence of the one-dimensional Kohonen algorithm}, Adv. Appl. Probab., 30 (1998), pp. 850-869. · Zbl 0980.62066
[9] A. Benveniste, M. Métivier, and P. Priouret, {\it Adaptive Algorithms and Stochastic Approximations}, Springer-Verlag, Berlin, 1990. · Zbl 0752.93073
[10] V. S. Borkar, {\it Stochastic Approximation: A Dynamical Systems Viewpoint}, Cambridge University Press, Cambridge, UK, 2008. · Zbl 1181.62119
[11] H. Cardot, P. Cénac, and P. A. Zitt, {\it Recursive estimation of the conditional geometric median in Hilbert spaces}, Electron. J. Stat., 6 (2012), pp. 2535-2562. · Zbl 1295.62080
[12] H. Cardot, P. Cénac, and P. A. Zitt, {\it Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm}, Bernoulli, 19 (2013), pp. 18-43. · Zbl 1259.62068
[13] H. Chen and Y. M. Zhu, {\it Stochastic approximation procedures with random varying truncations}, Sci. Sinica Ser. A, 29 (1986), pp. 914-926. · Zbl 0613.62107
[14] M. Duflo, {\it Random Iterative Models}, Stoch. Model. Appl. Probab. 34, Springer, Berlin, 1997. · Zbl 0868.62069
[15] D. Egloff and M. Leippold, {\it Quantile estimation with adaptive importance sampling}, Ann. Statist., 38 (2010), pp. 1244-1278. · Zbl 1183.62141
[16] G. Fort, E. Moulines, and P. Priouret, {\it Convergence of adaptive and interacting Markov chain Monte Carlo algorithms}, Ann. Statist., 39 (2012), pp. 3262-3289. · Zbl 1246.65003
[17] P. Hall and C. Heyde, {\it Martingale Limit Theory and Its Application}, Academic Press, New York, 1980. · Zbl 0462.60045
[18] B. Jourdain and J. Lelong, {\it Robust adaptive importance sampling for normal random vectors}, Ann. Appl. Probab., 19 (2009), pp. 1687-1718. · Zbl 1202.62106
[19] S. Kamal, {\it Stabilization of stochastic approximation by step size adaptation}, Systems Control Lett., 61 (2012), pp. 543-548. · Zbl 1250.93128
[20] T. Kohonen, {\it Analysis of simple self-organising process}, Biol. Cybernet., 44 (1982), pp. 135-140. · Zbl 0495.93038
[21] D. P. Kroese, T. Taimre, and Z. I. Botev, {\it Handbook of Monte Carlo Methods}, Wiley Ser. Probab. Stat., Wiley, Hoboken, NJ, 2011. · Zbl 1213.65001
[22] H. J. Kushner, {\it Stochastic approximation with discontinuous dynamics and state dependent noise: W.P. 1 and weak convergence}, J. Math. Anal. Appl., 81 (1981), pp. 524-542. · Zbl 0473.62074
[23] H. J. Kushner and D. Clark, {\it Stochastic Approximation for Constrained and Unconstrained Systems}, Springer-Verlag, Berlin, 1978. · Zbl 0381.60004
[24] H. J. Kushner and G. Yin, {\it Stochastic Approximation and Recursive Algorithms and Applications}, Springer-Verlag, Berlin, 2003. · Zbl 1026.62084
[25] B. Lapeyre and J. Lelong, {\it A framework for adaptive Monte Carlo procedures}, Monte Carlo Methods Appl., 17 (2011), pp. 77-98. · Zbl 1223.65003
[26] S. Laruelle and G. Pagès, {\it Stochastic approximation with averaging innovation applied to finance}, Monte Carlo Methods Appl., 18 (2012), pp. 1-52. · Zbl 1300.62059
[27] J. Lelong, {\it Asymptotic normality of randomly truncated stochastic algorithms}, ESAIM Probab. Stat., 17 (2013), pp. 105-119. · Zbl 1396.62187
[28] V. Lemaire and G. Pagès, {\it Unconstrained recursive importance sampling}, Ann. Appl. Probab., 20 (2010), pp. 1029-1067. · Zbl 1207.65007
[29] S. P. Meyn and R. L. Tweedie, {\it Markov Chains and Stochastic Stability}, Springer, London, 1993. · Zbl 0925.60001
[30] P. Milasevic and G. R. Ducharme, {\it Uniqueness of the spatial median}, Ann. Statist., 15 (1987), pp. 1332-1333. · Zbl 0631.62058
[31] G. Pagès, {\it A space quantization method for numerical integration}, J. Comput. Appl. Math., 89 (1997), pp. 1-38. · Zbl 0908.65012
[32] G. Pagès and H. Pham, {\it Optimal quantization methods for nonlinear filtering with discrete-time observations}, Bernoulli, 11 (2005), pp. 893-932. · Zbl 1084.62095
[33] G. Pagès, H. Pham, and J. Printems, {\it Optimal Quantization Methods and Applications to Numerical Problems in Finance}, in Handbook on Numerical Methods in Finance, S. T. Rachev and G. A. Anastassiou, eds., Birkhäuser, Boston, MA, 2004, pp. 253-298. · Zbl 1138.91467
[34] H. Pham, W. Runggaldier, and A. Sellami, {\it Approximation by quantization of the filter process and applications to optimal stopping problems under partial observation}, Monte Carlo Methods Appl., 11 (2005), pp. 57-81. · Zbl 1076.60060
[35] H. Robbins and S. Monro, {\it A stochastic approximation method}, Ann. Math. Statist., 22 (1951), pp. 400-407. · Zbl 0054.05901
[36] E. Saksman and M. Vihola, {\it On the ergodicity of the adaptive Metropolis algorithm on unbounded domains}, Ann. Appl. Probab., 20 (2010), pp. 2178-2203. · Zbl 1209.65004
[37] V. Tadić, {\it Stochastic approximation with random truncations, state-dependent noise and discontinuous dynamics}, Stoch. Rep., 64 (1998), pp. 283-326. · Zbl 1043.62526
[38] D. Y. Wong, B. H. Juang, and A. H. Gray, {\it Recent developments in vector quantization for speech processing}, in IEEE International Confrence on Acoustics, Speech and Signal Processing, 1981.
[39] L. Younes, {\it On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates}, Stoch. Rep., 65 (1999), pp. 177-228. · Zbl 0949.65006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.