×

The monogenic functional calculus. (English) Zbl 1334.47019

Alpay, Daniel (ed.), Operator theory. With 51 figures and 2 tables. In 2 volumes. Basel: Springer (ISBN 978-3-0348-0666-4/print; 978-3-0348-0667-1/ebook; 978-3-0348-0668-8/print+ebook; 978-3-0348-0692-3/online (updated continuously)). Springer Reference, 1823-1851 (2015).
This article discusses the so-called monogenic functional calculus for finite tuples of bounded (possibly noncommuting) selfadjoint operators acting on a common Hilbert space or, more generally, for tuples \(\pmb{T} = (T_1,\dots,T_n)\) of bounded linear operators (acting on a common Banach space) such that the spectrum of \(\sum_{j=1}^n \alpha_j T_j\) is a subset of the real line for any real scalars \(\alpha_1,\dots,\alpha_n\). Using Clifford algebras and (a counterpart of) the Cauchy kernel for them, to every such a tuple \(\pmb{T}\) one assigns a compact subset \(\gamma(\pmb{T})\) of \(\mathbb{R}^n\) and defines an assignment \(f \mapsto f(\pmb{T})\) (called the monogenic functional calculus) where \(f\) runs over all complex-valued real-analytic functions (in \(n\) variables) defined on open neighbourhoods of \(\gamma(\pmb{T})\) and \(f(\pmb{T})\) is a bounded linear operator on the underlying Banach space \(X\). In this calculus, monomials \(p(x_1,\dots,x_n) = x_1^{k_1} \cdot \dots \cdot x_n^{k_n}\) act as follows: \[ p(\pmb{T}) = \frac{k_1! \cdot \dots \cdot k_n!}{(k_1+\dots+k_n)!} \sum_{\sigma} T_{\sigma(1)} \cdot \dots \cdot T_{\sigma(n)}, \] where \(\sigma\) runs over all functions from \(\{1,\dots,k_1+\dots+k_n\}\) onto \(\{1,\dots,n\}\) which assume the value \(j\) exactly \(k_j\) times (\(j=1,\dots,n\)).
It is worth noting that, if the operators \(T_j\) do not commute, the monogenic functional calculus for \(\pmb{T}\) is not multiplicative; that is, \((fg)(\pmb{T})\) differs from \(f(\pmb{T}) g(\pmb{T})\) for some \(f\) and \(g\). On the other hand, if \(T_j\) pairwise commute, then \(\gamma(\pmb{T})\) coincides with the Taylor spectrum of \(\pmb{T}\) and the monogenic calculus for \(\pmb{T}\) coincides with Taylor’s.
The author discusses (in detail) Clifford algebras, the Cauchy kernel for them and the Weyl calculus. He also gives some applications to harmonic analysis.
For the entire collection see [Zbl 1325.47001].

MSC:

47A60 Functional calculus for linear operators
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
30G35 Functions of hypercomplex variables and generalized variables
47-02 Research exposition (monographs, survey articles) pertaining to operator theory
Full Text: DOI

References:

[1] Brackx, F., Delanghe, R., Sommen, F.:Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, Boston/London/Melbourne (1982) · Zbl 0529.30001
[2] Coifman, R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur \(L\)^{2} pour les courbes lipschitziennes. Ann. Math. (2) 116, 361-387 (1982) · Zbl 0497.42012
[3] Colojoarǎ, I., Foiaş, C.: Theory of Generalized Spectral Operators. Mathematics and Its Applications, vol. 9. Gordon and Breach, New York/London/Paris (1968)
[4] Franks, E., McIntosh, A.: A discrete quadratic estimates and holomorphic functional calculi in Banach spaces. Bull. Aust. Math. Soc. 58, 271-290 (1998) · Zbl 0942.47011 · doi:10.1017/S000497270003224X
[5] Jefferies, B.: Spectral Properties of Noncommuting Operators. Lecture Notes in Mathematics, vol. 1843. Springer, Berlin (2004) · Zbl 1056.47002
[6] Jefferies, B., McIntosh, A.: The Weyl calculus and Clifford analysis. Bull. Aust. Math. Soc. 57, 329-341 (1998) · Zbl 0915.47015 · doi:10.1017/S0004972700031695
[7] Jefferies, B., McIntosh, A., Picton-Warlow, J.: The monogenic functional calculus. Stud. Math. 136, 99-119 (1999) · Zbl 0971.47013
[8] Li, C., McIntosh, A.: Clifford algebras and \(H\)^{\(\infty\)} functional calculi of commuting operators. In: Ryan, J. (ed.) Clifford Algebras in Analysis and Related Topics (Fayetteville, AR, 1993). Studies in Advanced Mathematics, pp. 89-101. CRC, Boca Raton (1996) · Zbl 0843.47009
[9] Li, C., McIntosh, A., Qian, T.: Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoam. 10, 665-721 (1994) · Zbl 0817.42008 · doi:10.4171/RMI/164
[10] Martin, M.: Function spaces in quaternionic and clifford analysis. In: Alpay, D. (ed.) Operator Theory, chapter 48, pp. 1393-1422, Springer, Basel (2015). doi: 10.1007/978-3-0348-0692-3_24 · Zbl 1348.46028 · doi:10.1007/978-3-0348-0667-1_24
[11] McIntosh, A.: Clifford algebras and the higher-dimensional Cauchy integral. In: Approximation and Function Spaces (Warsaw, 1986), vol. 22, pp. 253-267. Banach Center Publications, PWN, Warsaw (1989)
[12] McIntosh, A.: Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains. In: Ryan, J. (ed.) Clifford Algebras in Analysis and Related Topics (Fayetteville, AR, 1993). Studies in Advanced Mathematics, pp. 33-87. CRC, Boca Raton (1996) · Zbl 0886.42011
[13] McIntosh, A., Pryde, A.: The solution of systems of operator equations using Clifford algebras. In: Miniconference on Linear Analysis and Function Spaces (Canberra, 1984). Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 9, pp. 212-222. Australian National University, Canberra (1985)
[14] McIntosh, A., Pryde, A.: A functional calculus for several commuting operators. Indiana Univ. Math. J. 36, 421-439 (1987) · Zbl 0694.47015 · doi:10.1512/iumj.1987.36.36024
[15] McIntosh, A., Pryde, A., Ricker, W.: Comparison of joint spectra for certain classes of commuting operators. Stud. Math. 88, 23-36 (1988) · Zbl 0665.47002
[16] Murray, M.: The Cauchy integral, Calderón commutators and conjugations of singular integrals in
[17] Nelson, E.: Operants: a functional calculus for non-commuting operators. In: Browder, F.E. (ed.) Functional Analysis and Related Fields. Proceedings of a Conference in Honour of Professor Marshal Stone, University of Chicago, May 1968, pp. 172-187. Springer, Berlin/Heidelberg/New York (1970) · Zbl 0239.47011
[18] Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics, vol. 108. Springer, New York (1986) · Zbl 0591.32002
[19] Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1987) · Zbl 0925.00005
[20] Ryan, J.: Cells of harmonicity and generalized Cauchy integral formulae. Proc. Lond. Math. Soc. (3) 60, 295-318 (1990) · Zbl 0663.30048
[21] Ryan, J.: Complex Clifford analysis and domains of holomorphy. J. Aust. Math. Soc. Ser. A 48, 413-433 (1990) · Zbl 0721.30036 · doi:10.1017/S1446788700029967
[22] Sommen, F.: Plane wave decompositions of monogenic functions. Ann. Pol. Math. 49, 101-114 (1988) · Zbl 0673.30038
[23] Vasilescu, F.-H.: Analytic Functional Calculus and Spectral Decompositions. Mathematics and its Applications (East European Series). D. Reidel Publishing, Dordrecht (1982)
[24] Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59, 572-611 (1984) · Zbl 0589.31005 · doi:10.1016/0022-1236(84)90066-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.