×

A model for the nonlinear mechanism responsible for cochlear amplification. (English) Zbl 1333.92011

Summary: A nonlinear model for the mechanism responsible for the amplification of the sound wave in the ear is derived using the geometric and material properties of the system. The result is a nonlinear beam equation, with the nonlinearity appearing in a coefficient of the equation. Once derived, the beam problem is analyzed for various loading conditions. Based on this analysis it is seen that the mechanism is capable of producing a spatially localized gain, as required by any amplification mechanism, but it is also capable of increasing the spatial contrast in the signal.

MSC:

92C10 Biomechanics
35C20 Asymptotic expansions of solutions to PDEs
76L99 Shock waves and blast waves in fluid mechanics

References:

[1] J. Ashmore, Cochlear outer hair cell motility,, Physiol. Rev., 88, 173 (2008) · doi:10.1152/physrev.00044.2006
[2] J. Ashmore, The remarkable cochlear amplifier,, Hearing Res., 266, 1 (2010) · doi:10.1016/j.heares.2010.05.001
[3] J. F. Ashmore, A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier,, J. Physiol., 388, 323 (1987)
[4] I. A. Belyantseva, Expression and localization of prestin and the sugar transporter glut-5 during development of electromotility in cochlear outer hair cells,, J. Neurosci., 20 (2000)
[5] R. S. Chadwick, Studies in cochlear mechanics,, in Mathematical Modeling of the Hearing Process (eds. M. H. Holmes and L. A. Rubenfeld), 369 (1981) · doi:10.1007/978-3-642-46445-4_2
[6] R. S. Chadwick, Compression, gain, and nonlinear distortion in an active cochlear model with subpartitions,, Proc. Nat. Acad. Sci., 95, 14594 (1998) · Zbl 0913.73060 · doi:10.1073/pnas.95.25.14594
[7] P. Dallos, Prestin, a new type of motor protein,, Nature Reviews Molecular Cell Biology, 3, 104 (2002) · doi:10.1038/nrm730
[8] D. Y. Gao, Nonlinear elastic beam theory with application in contact problems and variational approaches,, Mech. Res. Commun., 23, 11 (1996) · Zbl 0843.73042 · doi:10.1016/0093-6413(95)00071-2
[9] R. Glueckert, High resolution scanning electron microscopy of the human organ of Corti: A study using freshly fixed surgical specimens,, Hearing Res., 199, 40 (2005) · doi:10.1016/S0378-5955(04)00184-4
[10] M. H. Holmes, Frequency discrimination in the mammalian cochlea: Theory vs. experiment,, J. Acoust. Soc. Amer., 81, 103 (1987)
[11] M. H. Holmes, Cochlear mechanics: Analysis for a pure tone,, J. Acoust. Soc. Amer., 76, 767 (1984) · Zbl 0543.73126 · doi:10.1121/1.391300
[12] A. J. Hudspeth, Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli,, Proc. Nat. Acad. Sci., 74, 2407 (1977) · doi:10.1073/pnas.74.6.2407
[13] Z. Liao, Outer hair cell active force generation in the cochlear environment,, J. Acoust. Soc. Amer., 122, 2215 (2007) · doi:10.1121/1.2776154
[14] M. C. Liberman, Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier,, Nature, 419, 300 (2002) · doi:10.1038/nature01059
[15] J. Lighthill, Energy flow in the cochlea,, J. Fluid Mechanics, 106, 149 (1981) · Zbl 0474.76074 · doi:10.1017/S0022112081001560
[16] K. M. Lim, A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method,, Hearing Res., 170, 190 (2002) · doi:10.1016/S0378-5955(02)00491-4
[17] J. Meaud, Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea,, Biophysical Journal, 102, 1237 (1996) · doi:10.1016/j.bpj.2012.02.026
[18] K. E. Nilsen, The spatial and temporal representation of a tone on the guinea pig basilar membrane,, Proc. Natl. Acad. Sci., 97, 11751 (2006) · doi:10.1073/pnas.97.22.11751
[19] J. O. Pickles, <em>An Introduction to the Physiology of Hearing</em>,, Emerald Group (2008)
[20] S. Ramamoorthy, A mechano-electro-acoustical model for the cochlea: Response to acoustic stimuli,, JASA, 121, 2758 (2007) · doi:10.1121/1.2713725
[21] I. J. Russell, The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro,, Hearing Res., 22, 199 (1986) · doi:10.1016/0378-5955(86)90096-1
[22] I. J. Russell, The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane,, Proc. Nat. Acad. Sci., 94, 2660 (1997) · doi:10.1073/pnas.94.6.2660
[23] C. R. Steele, Comparison of WKB calculations and experimental results for three-dimensional cochlear models,, J. Acoust. Soc. Amer., 65, 1007 (1979) · Zbl 0407.76041 · doi:10.1121/1.382570
[24] I. U. Teudt, The hemicochlea preparation of the guinea pig and other mammalian cochleae,, J. Neurosci. Methods, 162, 187 (2007) · doi:10.1016/j.jneumeth.2007.01.012
[25] J. A. Tolomeo, Mechanics of microtubule bundles in pillar cells from the inner ear,, Biophys. J., 73, 2241 (1997) · doi:10.1016/S0006-3495(97)78255-9
[26] Y. Yoon, Frequency and spatial response of basilar membrane vibration in a three-dimensional gerbil cochlear model,, J. Mech. Mater. Struct., 2, 1449 (2007) · doi:10.2140/jomms.2007.2.1449
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.