×

A new approach to constrained optimization via image space analysis. (English) Zbl 1333.90100

Summary: In this article, by introducing a class of nonlinear separation functions, the image space analysis is employed to investigate a class of constrained optimization problems. Furthermore, the equivalence between the existence of nonlinear separation function and a saddle point condition for a generalized Lagrangian function associated with the given problem is proved.

MSC:

90C26 Nonconvex programming, global optimization
90C29 Multi-objective and goal programming
26B25 Convexity of real functions of several variables, generalizations
Full Text: DOI

References:

[1] Benoist, J., Borwein, J.M., Popovici, N.A.: Characterization of quasiconvex vector- valued functions. Proc. Am. Math. Soc. 131, 1109-1113 (2001) · Zbl 1024.26020 · doi:10.1090/S0002-9939-02-06761-8
[2] Benoist, J., Popovici, N.: Characterization of convex and quasiconvex set-valued maps. Math. Methods Oper. Res. 57, 427-435 (2003) · Zbl 1047.54012
[3] Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. Survey of mathematical pro- gramming. In: Proceedings of ninth international mathematical programming symposium, Budapest, vol 2. North-Holland, pp. 423-439 (1979) · Zbl 0434.90077
[4] Chen, J., Li, S., Wan, Z., Yao, J. C.: Vector variational-like inequalities with constraints: separation and alternative. J. Optim. Theory Appl. (2015, in press) · Zbl 1322.49010
[5] Chinaie, M., Zafarani, J.: Image space analysis and scalarization of multivalued opti-mization. J. Optim. Theory Appl. 142, 451-467 (2009) · Zbl 1188.90231 · doi:10.1007/s10957-009-9531-6
[6] Chinaie, M., Zafarani, J.: Image space analysis and scalarization for \[\varepsilon\] ε-optimization of multifunctions. J. Optim. Theory Appl. 157, 685-695 (2013) · Zbl 1292.90265 · doi:10.1007/s10957-010-9657-6
[7] Dien, P.H., Mastroeni, G., Pappalardo, M., Quang, P.H.: Regularity condition for constrained extreme problems via image space. J. Optim. Theory Appl. 80, 19-37 (1994) · Zbl 0797.90089 · doi:10.1007/BF02196591
[8] Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331-365 (1984) · Zbl 0504.49012 · doi:10.1007/BF00935321
[9] Giannessi, F.; Mastroeni, G.; Pellegrini, L.; Giannessi, F. (ed.), On the theory of vector optimization and variational inequalities. Image space analysis and separation.Vector variational inequalities and vector equilibria (1999), Dordrecht · Zbl 1039.49006
[10] Giannessi, F., Pellegrini, L.: Image space analysis for vector optimization and variational inequalities. Scalarization. Combinatorial and Global Optimization, Ser. Appl. Math., vol. 14, pp. 97-110. World Sci. Publ., River Edge (2002) · Zbl 1039.49006
[11] Giannessi, F.: Constrained Optimization and Image Space Analysis. Separation of Sets and Optimality Conditions, vol. 1. Springer, New York (2005) · Zbl 1082.49001
[12] Giannessi, F., Maugeri, A.: Variational Analysis and Applications, Non Convex Opti- mization and Its Applications, vol. 79. Springer, New York (2005)
[13] Giannessi, F., Mastroeni, G., Yao, J.-C.: On maximum and variational principles via image space analysis. Positivity 16, 405-427 (2012) · Zbl 1334.49028 · doi:10.1007/s11117-012-0160-1
[14] Jahn, J.: Vector Optimization. Theory, Applications and Extensions. Springer, Berlin (2011) · Zbl 1401.90206
[15] Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical program- ming in Banach spaces. Math. Oper. Res. 4, 79-97 (1979) · Zbl 0409.90086 · doi:10.1287/moor.4.1.79
[16] Li, Z.F., Chen, G.Y.: Lagrangian multipliers, saddle points, and duality in vector optimization of set-valued maps. J. Math. Anal. Appl. 215, 297-316 (1997) · Zbl 0893.90150 · doi:10.1006/jmaa.1997.5568
[17] Li, J., Feng, S.Q., Zhang, Z.: A unified approach for constrained extremum problems: Image Space Analysis. J. Optim. Theory Appl. 159, 69-92 (2013) · Zbl 1288.90092 · doi:10.1007/s10957-013-0276-x
[18] Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989) · doi:10.1007/978-3-642-50280-4
[19] Pappalardo, M.: Image space approach to penalty methods. J. Optim. Theory Appl. 64, 141-152 (1990) · Zbl 0667.90084 · doi:10.1007/BF00940028
[20] Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413-427 (2001) · Zbl 1012.90061 · doi:10.1023/A:1017535631418
[21] Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071-1806 (2003) · Zbl 1046.90084 · doi:10.1137/S0363012902411532
[22] Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems I: Image Space Analysis. J. Optim. Theory Appl. 161, 738-762 (2014) · Zbl 1307.90198 · doi:10.1007/s10957-013-0468-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.