×

Highest weight generating functions for Hilbert series. (English) Zbl 1333.81401

Summary: We develop a new method for representing Hilbert series based on the highest weight Dynkin labels of their underlying symmetry groups. The method draws on plethystic functions and character generating functions along with Weyl integration. We give explicit examples showing how the use of such highest weight generating functions (”HWGs”) permits an efficient encoding and analysis of the Hilbert series of the vacuum moduli spaces of classical and exceptional SQCD theories and also of the moduli spaces of instantons. We identify how the HWGs of gauge invariant operators of a selection of classical and exceptional SQCD theories result from the interaction under symmetrisation between a product group and the invariant tensors of its gauge group. In order to calculate HWGs, we derive and tabulate character generating functions for low rank groups by a variety of methods, including a general character generating function, based on the Weyl Character Formula, for any classical or exceptional group.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory

Software:

LieART

References:

[1] S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP11 (2007) 050 [hep-th/0608050] [INSPIRE]. · Zbl 1245.81264 · doi:10.1088/1126-6708/2007/11/050
[2] B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP03 (2007) 090 [hep-th/0701063] [INSPIRE]. · doi:10.1088/1126-6708/2007/03/090
[3] A. Hanany and N. Mekareeya, Counting Gauge Invariant Operators in SQCD with Classical Gauge Groups, JHEP10 (2008) 012 [arXiv:0805.3728] [INSPIRE]. · Zbl 1245.81092 · doi:10.1088/1126-6708/2008/10/012
[4] J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: A Geometric Aperçu, JHEP05 (2008) 099 [arXiv:0803.4257] [INSPIRE]. · doi:10.1088/1126-6708/2008/05/099
[5] A. Hanany, N. Mekareeya and G. Torri, The Hilbert Series of Adjoint SQCD, Nucl. Phys.B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE]. · Zbl 1196.81236 · doi:10.1016/j.nuclphysb.2009.09.016
[6] S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP06 (2010) 100 [arXiv:1005.3026] [INSPIRE]. · Zbl 1288.81074 · doi:10.1007/JHEP06(2010)100
[7] A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP01 (2013) 070 [arXiv:1205.4741] [INSPIRE]. · Zbl 1342.81494 · doi:10.1007/JHEP01(2013)070
[8] D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The Master Space ofN \[\mathcal{N} =1\] Gauge Theories, JHEP08 (2008) 012 [arXiv:0801.1585] [INSPIRE]. · doi:10.1088/1126-6708/2008/08/012
[9] D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, Mastering the Master Space, Lett. Math. Phys.85 (2008) 163 [arXiv:0801.3477] [INSPIRE]. · Zbl 1162.81410 · doi:10.1007/s11005-008-0255-6
[10] J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations, Cambridge University Press, Cambridge (1997). · Zbl 0923.17001
[11] A. Hanany, N. Mekareeya and A. Zaffaroni, Partition Functions for Membrane Theories, JHEP09 (2008) 090 [arXiv:0806.4212] [INSPIRE]. · Zbl 1245.81175 · doi:10.1088/1126-6708/2008/09/090
[12] R. Feger and T.W. Kephart, LieART — A Mathematica Application for Lie Algebras and Representation Theory, arXiv:1206.6379 [INSPIRE]. · Zbl 1375.68226
[13] D. Cox, D. O’Shea and J. Little, Ideals, Varieties and Algorithms, Springer (2007). · Zbl 1118.13001
[14] P. Cvitanovic, Group Theory: Birdtracks, Lie Algebras and Exceptional Groups, Princeton University Press, Princeton (2008). · Zbl 1152.22001
[15] J.A. de Azcarraga, A.J. Macfarlane, A.J. Mountain and J.C. Perez Bueno, Invariant tensors for simple groups, Nucl. Phys.B 510 (1998) 657 [physics/9706006] [INSPIRE]. · Zbl 0953.17005 · doi:10.1016/S0550-3213(97)00609-3
[16] P. Pouliot, Spectroscopy of gauge theories based on exceptional Lie groups, J. Phys.A 34 (2001) 8631 [hep-th/0107151] [INSPIRE]. · Zbl 1011.81071
[17] E. Witten, An SU(2) Anomaly, Phys. Lett.B 117 (1982) 324 [INSPIRE]. · doi:10.1016/0370-2693(82)90728-6
[18] D. Tong, TASI lectures on solitons: Instantons, monopoles, vortices and kinks, hep-th/0509216 [INSPIRE].
[19] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys.252 (2004) 359 [hep-th/0404225] [INSPIRE]. · Zbl 1108.81038 · doi:10.1007/s00220-004-1189-1
[20] C.A. Keller and J. Song, Counting Exceptional Instantons, JHEP07 (2012) 085 [arXiv:1205.4722] [INSPIRE]. · Zbl 1398.81244 · doi:10.1007/JHEP07(2012)085
[21] M.R. Douglas, Branes within branes, hep-th/9512077 [INSPIRE]. · Zbl 0946.81058
[22] H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., Invent. Math.162 (2005) 313 [math.AG/0306198] [INSPIRE]. · Zbl 1100.14009 · doi:10.1007/s00222-005-0444-1
[23] W. Fulton and J. Harris, Representation Theory, Springer, New York (2004). · doi:10.1007/978-1-4612-0979-9
[24] C. Hughes, Haar measure and weyl integration, (2006).
[25] R. Slansky, Group Theory for Unified Model Building, Phys. Rept.79 (1981) 1 [INSPIRE]. · doi:10.1016/0370-1573(81)90092-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.