×

Scattering, bound, and quasi-bound states of the generalized symmetric Woods-Saxon potential. (English) Zbl 1333.81140

Summary: The exact analytical solutions of the Schrödinger equation for the generalized symmetrical Woods-Saxon potential are examined for the scattering, bound, and quasi-bound states in one dimension. The reflection and transmission coefficients are analytically obtained. Then, the correlations between the potential parameters and the reflection-transmission coefficients are investigated, and a transmission resonance condition is derived. Occurrence of the transmission resonance has been shown when incident energy of the particle is equal to one of the resonance energies of the quasi-bound states.{
©2016 American Institute of Physics}

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81U30 Dispersion theory, dispersion relations arising in quantum theory
81U05 \(2\)-body potential quantum scattering theory
35B34 Resonance in context of PDEs

References:

[1] Dombey, N.; Kennedy, P.; Calogeracos, A., Supercriticality and transmission resonances in the Dirac equation, Phys. Rev. Lett., 85, 1787-1790 (2000) · doi:10.1103/PhysRevLett.85.1787
[2] Kennedy, P., The Woods-Saxon potential in the Dirac equation, J. Phys. A: Math. Gen., 35, 689-698 (2002) · Zbl 1041.81100 · doi:10.1088/0305-4470/35/3/314
[3] Kennedy, P.; Dombey, N., Low momentum scattering in the Dirac equation, J. Phys. A: Math. Gen., 35, 6645-6657 (2002) · Zbl 1066.81040 · doi:10.1088/0305-4470/35/31/309
[4] Rojas, C.; Villalba, V. M., Scattering of a Klein-Gordon particle by a Woods-Saxon potential, Phys. Rev. A, 71, 052101 (2005) · Zbl 1227.81169 · doi:10.1103/PhysRevA.71.052101
[5] Alpdoğan, S.; Aydoğdu, O.; Havare, A., Relativistic spinless particles in the generalized asymmetric Woods-Saxon potential, J. Phys. A: Math. Theor., 46, 015301 (2013) · Zbl 1259.81022 · doi:10.1088/1751-8113/46/1/015301
[6] Candemir, N.; Bayrak, O., Massive Dirac equation in asymmetric Hulthén potential, J. Math. Phys., 54, 042104 (2013) · Zbl 1281.81032 · doi:10.1063/1.4799043
[7] Villalba, V. M.; Greiner, W., Transmission resonances and supercritical states in a one-dimensional cusp potential, Phys. Rev. A, 67, 052707 (2003) · doi:10.1103/PhysRevA.67.052707
[8] Villalba, V. M.; González-Díaz, L. A., Resonant states in an attractive one-dimensional cusp potential, Phys. Scr., 75, 645-650 (2007) · Zbl 1136.81364 · doi:10.1088/0031-8949/75/5/009
[9] Villalba, V. M.; González-Díaz, L. A., Tunneling and transmission resonances of a Dirac particle by a double barrier, Phys. Scr., 81, 025010 (2010) · Zbl 1190.81046 · doi:10.1088/0031-8949/81/02/025010
[10] Panella, O.; Biondini, S.; Arda, A., New exact solution of the one-dimensional Dirac equation for the Woods-Saxon potential within the effective mass case, J. Phys. A: Math. Theor., 43, 325302 (2010) · Zbl 1194.81075 · doi:10.1088/1751-8113/43/32/325302
[11] Aydoğdu, O.; Arda, A.; Sever, R., Effective-mass Dirac equation for Woods-Saxon potential: Scattering, bound states, and resonances, J. Math. Phys., 53, 042106 (2012) · Zbl 1275.81024 · doi:10.1063/1.4705284
[12] Costa, L. S.; Prudente, F. V.; Acioli, P. H.; Soares Neto, J. J.; Vianna, J. D. M., A study of confined quantum systems using the Woods-Saxon potential, J. Phys. B: At., Mol. Opt. Phys., 32, 2461-2470 (1999) · doi:10.1088/0953-4075/32/10/313
[13] Woods, R. D.; Saxon, D. S., Diffuse surface optical model for nucleon-nuclei scattering, Phys. Rev., 95, 577 (1954) · doi:10.1103/PhysRev.95.577
[14] Brandan, M. E.; Satchler, G. R., The interaction between light heavy-ions and what it tells us, Phys. Rep., 285, 143-243 (1997) · doi:10.1016/S0370-1573(96)00048-8
[15] Satchler, G. R., Heavy-ion scattering and reactions near the Coulomb barrier and ‘threshold anomalies, Phys. Rep., 199, 147-190 (1991) · doi:10.1016/0370-1573(91)90066-U
[16] Zaichenko, A. K.; Ol’Khovskii, V. S., Analytic solutions of the problem of scattering by potentials of the Eckart class, Theor. Math. Phys., 27, 475-477 (1976) · doi:10.1007/BF01051241
[17] Flügge, S., Practical Quantum Mechanics, I (1994)
[18] Bayrak, O.; Aciksoz, E., Corrected analytical solution of the generalized Woods-Saxon potential for arbitrary ℓ states, Phys. Scr., 90, 015302 (2015) · doi:10.1088/0031-8949/90/1/015302
[19] Jian-You, G.; Xiang Zheng, F.; Fu-Xin, Xu., Solution of the relativistic Dirac-Woods-Saxon problem, Phys. Rev. A, 66, 062105 (2002) · doi:10.1103/PhysRevA.66.062105
[20] Guo, J. Y.; Sheng, Z. Q., Solution of the Dirac equation for the Woods-Saxon potential with spin and pseudospin symmetry, Phys. Lett. A, 338, 90-96 (2005) · Zbl 1136.81357 · doi:10.1016/j.physleta.2005.02.026
[21] Candemir, N.; Bayrak, O., Bound states of the Dirac equation for the generalized Woods-Saxon potential in pseudospin and spin symmetry limits, Mod. Phys. Lett. A, 29, 1450180 (2014) · Zbl 1302.81091 · doi:10.1142/S0217732314501806
[22] Mackintosh, R. S.; Kobos, A. M., Evaluation of model-independent optical potentials for the \(O^{16}+\(Ca^{40}\) system, Phys. Rev. C, 26, 1766 (1982) · doi:10.1103/physrevc.26.1766
[23] Boztosun, I., New results in the analysis of \(^{16}O+^{28}Si\) elastic scattering by modifying the optical potential, Phys. Rev. C, 66, 024610 (2002) · doi:10.1103/physrevc.66.024610
[24] Boztosun, I.; Bayrak, O.; Dagdemir, Y., A comparative study of the \(^{12}C+^{24}Mg\) system with deep and shallow potentials, Int. J. Mod. Phys. E, 14, 663-673 (2005) · doi:10.1142/S0218301305003442
[25] Kocak, G.; Karakoc, M.; Boztosun, I.; Balantekin, A. B., Effects of α-cluster potentials for the \(O^{16} + \(O^{16}\) fusion reaction and S factor, Phys. Rev. C, 81, 024615 (2010) · doi:10.1103/physrevc.81.024615
[26] Dapo, H.; Boztosun, I.; Kocak, G.; Balantekin, A. B., Influence of long-range effects on low-energy cross sections of He and HeX: The lithium problem, Phys. Rev. C, 85, 044602 (2012) · doi:10.1103/physrevc.85.044602
[27] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables · Zbl 0171.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.