×

Protection of quantum correlations against decoherence. (English) Zbl 1333.81048

Summary: The protection of different quantum correlations, such as Bell nonlocality, quantum discord, and geometric quantum discord as trace distance against noise, is explored. By weak measurement and quantum measurement reversal, we show that the mentioned quantum correlations can be effectively preserved probabilistically from the decoherence due to amplitude damping. The results will play an important role in the experiments using the quantum correlations as resource.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81S22 Open systems, reduced dynamics, master equations, decoherence
Full Text: DOI

References:

[1] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[2] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)
[3] Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[4] Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001) · Zbl 0988.81023 · doi:10.1088/0305-4470/34/35/315
[5] Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010) · Zbl 1255.81213 · doi:10.1103/PhysRevLett.105.190502
[6] Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013) · doi:10.1103/PhysRevA.87.064101
[7] Scarani, V., Gisin, N.: Quantum communication between N partners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001) · doi:10.1103/PhysRevLett.87.117901
[8] Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[9] Acín, A., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007) · doi:10.1103/PhysRevLett.98.230501
[10] Brukner, Č., Żukowski, M., Pan, J.W., Zeilinger, A.: Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett. 92, 127901 (2004) · Zbl 1267.81086 · doi:10.1103/PhysRevLett.92.127901
[11] Pironio, S., et al.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010) · doi:10.1038/nature09008
[12] Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012) · doi:10.1103/PhysRevLett.109.070501
[13] Streltsov, A., Kampermann, H., Bru \[\beta\] β, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)
[14] Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011) · doi:10.1103/PhysRevA.83.032323
[15] Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011) · Zbl 1261.81053 · doi:10.1103/PhysRevA.83.032324
[16] Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[17] Schröinger, E.: Discussion of probability relations between separated systems (II). Proc. Cambr. Philos. Soc. 31, 553 (1935) · JFM 61.1561.03
[18] Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969) · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[19] Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989) · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[20] Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008) · doi:10.1103/PhysRevLett.100.050502
[21] Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012) · doi:10.1103/PhysRevA.86.034101
[22] Hu, X., Fan, H., Zhou, D.L., Liu, W.M.: Quantum correlating power of local quantum channels. ibid 87, 032340 (2013)
[23] Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003) · doi:10.1038/nature01623
[24] Kwiat, P.G., Lopez, S.B., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ’hidden’ non-locality. Nature 409, 1014 (2001) · doi:10.1038/35059017
[25] Dong, R., Lassen, M., Heersink, J., Marquardt, C., Filip, R., Leuchs, G., Andersen, U.L.: Experimental entanglement distillation of mesoscopic quantum states. Nat. Phys. 4, 919 (2008) · doi:10.1038/nphys1112
[26] Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998) · doi:10.1103/PhysRevLett.81.2594
[27] Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498 (2000) · doi:10.1126/science.290.5491.498
[28] West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010) · doi:10.1103/PhysRevLett.105.230503
[29] Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999) · Zbl 1042.81524 · doi:10.1103/PhysRevLett.82.2417
[30] Koashi, M., Ueda, M.: Reversing measurement and probabilistic quantum error correction. Phys. Rev. Lett. 82, 2598 (1999) · doi:10.1103/PhysRevLett.82.2598
[31] Katz, N., Ansmann, M., Bialczak, R.C., Lucero, E., McDermott, R., Neeley, M., Steffen, M., Weig, E.M., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006) · doi:10.1126/science.1126475
[32] Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006) · doi:10.1103/PhysRevLett.97.166805
[33] Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008) · doi:10.1103/PhysRevLett.101.200401
[34] Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009) · doi:10.1364/OE.17.011978
[35] Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010) · doi:10.1103/PhysRevA.81.040103
[36] Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011) · doi:10.1364/OE.19.016309
[37] Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012) · doi:10.1038/nphys2178
[38] Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed \[\text{ spin }-\frac{1}{2}\] spin-12 states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995) · Zbl 1020.81533 · doi:10.1016/0375-9601(95)00214-N
[39] Horodecki, R.: \[ \text{ Two }-\text{ spin }-\frac{1}{2}\] Two-spin-12 mixtures and Bell’s inequalities. ibid 210, 223 (1996) · Zbl 1072.81511
[40] Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011) · doi:10.1103/PhysRevA.84.042313
[41] Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014) · Zbl 1451.81106 · doi:10.1088/1367-2630/16/1/013038
[42] Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013) · doi:10.1103/PhysRevA.88.012117
[43] Weisskopf, V., Wigner, E.: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheori. Z. Phys. 63, 54 (1930) · JFM 56.0752.06 · doi:10.1007/BF01336768
[44] Li, Y.-L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067 (2011) · Zbl 1273.81039 · doi:10.1007/s11128-013-0585-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.