×

Critique of quantum optical experimental refutations of Bohr’s principle of complementarity, of the Wootters-Zurek principle of complementarity, and of the particle-wave duality relation. (English) Zbl 1333.81013

Summary: I argue that quantum optical experiments that purport to refute Bohr’s principle of complementarity (BPC) fail in their aim. Some of these experiments try to refute complementarity by refuting the so called particle-wave duality relations, which evolved from the Wootters-Zurek reformulation of BPC (WZPC). I therefore consider it important for my forgoing arguments to first recall the essential tenets of BPC, and to clearly separate BPC from WZPC, which I will argue is a direct contradiction of BPC. This leads to a need to consider the meaning of particle-wave duality relations and to question their fundamental status. I further argue (albeit, in opposition to BPC) that particle and wave complementary concepts are on a different footing than other pairs of complementary concepts.

MSC:

81P05 General and philosophical questions in quantum theory
00A79 Physics
81V80 Quantum optics

References:

[1] Bohr, N.: The quantum postulate and the recent development of atomic theory at Atti del Congresso Internazionale dei Fisici, Como, 11-20 September 1927. Zanichelli, Bologna, 1928, vol. 2, pp. 565-588 (1928) · Zbl 1117.81305
[2] Bohr, N.: Substance of the Como lecture is reprinted in Nature, vol. 121, pp. 580-590 (1928) · JFM 54.1006.01
[3] Bohr, N.: Atomic Theory and the Description of Nature. Cambridge University Press, Cambridge (1934). reprinted 1961 · JFM 60.0774.02
[4] Bohr, N.: Atomic Physics and Human Knowledge. Science Editions, New York (1961) · Zbl 0084.00101
[5] Bohr, N.: Discussion with Einstein on epistemological problems in quantum mechanics. In: Schilpp, P.A. (ed.) Albert Einstein, Philosopher-Scientist, pp. 201-241. Library of Living Philosophers, Evansten (1949). Reprint: (Open Court, La salle, Illinois, third edition, 1982) pp. 201-241
[6] Jammer, M.: The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective. Wiley, New York (1974)
[7] Ghose, P., Home, D., Agarwal, G.S.: An experiment to throw more light on light. Phys. Lett. A 153, 403-406 (1991) · doi:10.1016/0375-9601(91)90686-3
[8] Brida, G., Genovese, M., Gramegna, M., Predazzi, E.: A conclusive experiment to throw more light on “light”. Phys. Lett. A 328, 313-318 (2004) · Zbl 1134.81301 · doi:10.1016/j.physleta.2004.06.050
[9] Mizobuchi, Y., Ohtaké, Y.: An “experiment to throw more light on light”. Phys. Lett. A 168, 1-5 (1992) · doi:10.1016/0375-9601(92)90319-H
[10] Afshar. S.S.: Violation of the principle of complementarity, and its implications. In: Roychoudhuri, C., Creath, K. (eds.) The Nature of Light: What is a Photon? iProc. SPIE vol. 5866. San Diego: SPIE, pp. 229-244 (2005)
[11] Chown, M.: Quantum Rebel. N. Sci. 183, 30-35 (2004)
[12] Grangier, P., Roger, G., Aspect, A.: Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. EuroPhys. Lett. 1, 173-179 (1986) · doi:10.1209/0295-5075/1/4/004
[13] Rauch, H., Treimer, W., Bonse, U.: Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369-371 (1974) · doi:10.1016/0375-9601(74)90132-7
[14] Rauch, H., Werner, S.: Nuetron Interferometry: Lessons in Experimental Quantum Mechanics. Clarendon Press, Oxford (2000)
[15] Rauch, H., Summhammer, J.: Static versus time-dependent absorption in neutron interferometry. Phys. Lett. A 104, 44-46 (1984) · doi:10.1016/0375-9601(84)90586-3
[16] Greenberger, D.M., Yasin, A.: Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391-394 (1988) · doi:10.1016/0375-9601(88)90114-4
[17] Kaloyerou, P.N., Brown, H.R.: On neutron partial absorption experiments. Phys. B 176, 78-92 (1992) · doi:10.1016/0921-4526(92)90600-W
[18] Brown, H.R., Summhammer, J., Callaghan, R.E., Kaloyerou, P.N.: Neutron interferometry with antiphase modulation. Phys. lett. A 163, 21-25 (1992) · doi:10.1016/0375-9601(92)90153-D
[19] Badurek, G., Rauch, H., Tuppinger, D.: Neutron interferometric double-resonance experiment. Phys. Rev. A 34, 2600-2608 (1986) · doi:10.1103/PhysRevA.34.2600
[20] Bogár, P., Bergou, J.: Entanglement of atomic beams: tests of complementarity and other applications. Phys. Rev. A 53, 49-52 (1996) · doi:10.1103/PhysRevA.53.49
[21] Dürr, S., Nonn, T., Rempe, G.: Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature 395, 33-37 (1998) · doi:10.1038/25653
[22] Li, Z.-Y.: Atom interferometers: beyond complementarity principles. arXiv:quant-ph/0109023v1, 4 Sep 2001
[23] Dürr, S., Nonn, T., Rempe, G.: Fringe visibility and which-way information in an atom interferometer. Phys. Rev. Lett. 81, 5705-5709 (1998) · doi:10.1103/PhysRevLett.81.5705
[24] Bertet, P., Osnaghi, S., Rauschenbeutel, A., Nogues, G., Auffeves, A., Brune, M., Raimond, J.M., Haroche, S.: A complementarity experiment with an interferometer at the quantum classical boundary. Nature 411, 166-170 (2001) · doi:10.1038/35075517
[25] Scully, M.O., Zubairy, M.S.: Quantum Optics, pp. 494-496. Cambridge University Press, Cambridge (1997) · doi:10.1017/CBO9780511813993
[26] Marzlin, K.-P., Sanders, B.C., Knight, P.L.: Complementarity and uncertainty relations for matter wave Interferometry. Phys. Rev. A 78, 062107 (2008) · doi:10.1103/PhysRevA.78.062107
[27] Ghose, P.: Testing Quantum Mechanics on a New Ground. Cambridge University Press, Cambridge (1999) · doi:10.1017/CBO9780511585784
[28] Bohm, D.: A suggested interpretation of the quantum theory in Terms of “hidden” variables. I. Phys. Rev. 85, 166-179 (1952) · Zbl 0046.21004 · doi:10.1103/PhysRev.85.166
[29] Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180-193 (1952) · Zbl 0046.21004 · doi:10.1103/PhysRev.85.180
[30] de Broglie, L.: Une Interpretation Causale et Non Lindaire de la Mechanique Ondulatoire: la Theorie de la Double Solution. Gauthier-Villars, Paris (1956). [English translation: Non-linear Wave Mechanics: A Causal Interpretation (Elsevier, Amsterdam, 1960)] · Zbl 0074.44003
[31] de Broglie, L.: The reinterpretation of wave mechanics. Found. Phys. 1, 5-15 (1970) · doi:10.1007/BF00708650
[32] Kaloyerou, P.N.: The GRA beam-splitter experiments and particle-wave duality of light. J. Phys. A 39, 11541-11566 (2006) · Zbl 1101.81005 · doi:10.1088/0305-4470/39/37/014
[33] Kaloyerou, P.N.: Investigation of the Quantum Potential in the Relativistic Domain. PhD Thesis, University of London (1985)
[34] Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An ontological basis for the quantum theory: a causal interpretation of quantum fields. Phys. Rep. 144, 349-375 (1987) · doi:10.1016/0370-1573(87)90024-X
[35] Kaloyerou, P.N.: The causal interpretation of the electromagnetic field. Phys. Rep. 244, 287-358 (1994) · doi:10.1016/0370-1573(94)90155-4
[36] Kaloyerou, P.N.: A field theoretic causal model of the Mach-Zehnder Wheeler delayed-choice experiment. Phys. A 355, 297-318 (2005) · doi:10.1016/j.physa.2005.02.059
[37] Buks, E., Schuster, R., Hieblum, M., Mahalu, D., Umansky, V.: Dephasing in electron interference by a ‘which-path’ detector. Nature 391, 871-874 (1998) · doi:10.1038/36057
[38] Chang, D.-I., Khym, G.L., Kang, K., Chung, Y., Lee, H.-J., Seo, M., Heiblum, M., Mahalu, D., Umansky, V.: Quantum mechanical complementarity probed in a closed-loop Aharanov-Bohm interferometer. Nat. Phys. 4, 205-209 (2008) · doi:10.1038/nphys854
[39] Wheeler, JA; Marlow, AR (ed.), The “past” and the “delayed-choice” double-slit experiment, 9-48 (1978), New York · doi:10.1016/B978-0-12-473250-6.50006-6
[40] Wheeler, JA; Wheeler, JA (ed.); Zurek, WH (ed.), Law without law, 182-213 (1983), Princeton · doi:10.1515/9781400854554
[41] Heisenberg, W.; Wheeler, JA (ed.); Zurek, WH (ed.), The physical content of quantum kinematics and mechanics, 62-84 (1983), Princeton
[42] Bohm, D., Hiley, B.J., Dewdney, C.: A quantum potential approach to the Wheeler delayed-choice experiment. Nature 315, 294-297 (1985) · doi:10.1038/315294a0
[43] Scully, M.O., Drühl, K.: Quantum erasure: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25, 2208-2213 (1982) · doi:10.1103/PhysRevA.25.2208
[44] Zajong, A.G., Wang, L.J., Zou, X.Y., Mandel, L.: Quantum eraser. Nature 353, 507-508 (1991) · doi:10.1038/353507b0
[45] Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature 351, 111-116 (1991) · doi:10.1038/351111a0
[46] Kwiat, P.G., Steinberg, A.M., Chiao, R.A.: Observation of a “quantum eraser”: a revival of coherence in a two-photon interference experiment. Phys. Rev. A 45, 7729-7739 (1992) · doi:10.1103/PhysRevA.45.7729
[47] Herzog, T.G., Kwait, P.G., Weinfurter, H., Zeilinger, A.: Complementarity and the quantum eraser. Phys. Rev. Lett. 75, 3034-3037 (1995) · doi:10.1103/PhysRevLett.75.3034
[48] Englert, B.-G., Scully, M.O., Walther, H.: Quantum erasure in double-slit interferometers with which-way detectors. Am. J. Phys. 67, 325-329 (1999) · doi:10.1119/1.19257
[49] Kim, Y.-H., Yu, R., Kulik, P., Shih, Y., Scully, M.O.: Delayed “choice” quantum erasure. Phys. Rev. Lett. 84, 1-5 (2000) · doi:10.1103/PhysRevLett.84.1
[50] Wootters, W.K., Zurek, W.H.: Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr’s principle. Phys. Rev. D 19, 473-484 (1979) · doi:10.1103/PhysRevD.19.473
[51] Bartell, L.S.: Complementarity in the double-slit experiment: on simple realisable systems for observing intermediate particle-wave behaviour. Phys. Rev. D 21, 1698-1699 (1980) · doi:10.1103/PhysRevD.21.1698
[52] Jaeger, G., Shimony, A., Vaidman, L.: Two Interferometric Complementarities. Phys. Rev. A 51, 54-67 (1995) · doi:10.1103/PhysRevA.51.54
[53] Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154-2157 (1996) · doi:10.1103/PhysRevLett.77.2154
[54] Jaeger, G., Horne, M.A., Shimony, A.: Complementarity of one-particle and two-particle interference. Phys. Rev. A 48, 1023-1027 (1993) · doi:10.1103/PhysRevA.48.1023
[55] Saunders, B.C., Milburn, G.I.: Complementarity in a quantum nondemolitian measurement. Phys. Rev. A 39, 694-702 (1989) · doi:10.1103/PhysRevA.39.694
[56] Zou, X.Y., Wang, L.J., Mandel, L.: Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318-321 (1991) · doi:10.1103/PhysRevLett.67.318
[57] Mandel, L.: Coherence and indistinguishability. Opt. Lett. 16, 1882-1883 (1991) · doi:10.1364/OL.16.001882
[58] Liu, H.-Y., Huang, J.-H., Gao, J.-R., Zubairy, M.S., Zhu, S.-Y.: Relation between wave-particle duality and quantum uncertainty. Phy. Rev. A 85, 022106 (2012) · doi:10.1103/PhysRevA.85.022106
[59] Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. I, II, III. Addison-Wesley, Reading (1964) · Zbl 0131.38703
[60] Heisenberg, W.: Questions of principle in modern physics. In: Philosophic Problems in Nuclear Science, p. 49. Translated by F. C. Hayes, Faber and Faber, London (1952)
[61] Heisenberg, W.: Recent changes in the foundations of exact science. In: Philosophic Problems in Nuclear Science, p. 15. Translated by F. C. Hayes, Faber and and Faber, London (1952)
[62] Camilleri, K., Schlosshauer, M.: Niels Bohr as Philosopher of Experiment: Does Decoherence Theory Challenge Bohr’s Doctrine of Classical Concepts? arXiv:1502.06547v1 [physics.hist-ph] 23 Feb 2015 · Zbl 1307.81007
[63] Dewdney, C.: PhD Thesis, University of London (1983) · Zbl 1161.81303
[64] Dewdney, C., Phillipides, C., Hiley, B.J.: Quantum interference and the quantum potential. Nuovo Cimento B 52, 15-28 (1979) · doi:10.1007/BF02743566
[65] Dewdney, C.: Particle trajectories and interference in a time-dependent model of neutron single crystal interferometry. Phys. Lett. A 109, 377-383 (1985) · doi:10.1016/0375-9601(85)90078-7
[66] Dewdney, C., Holland, P.R., Kyprianidis, A.: What happens in a spin measurement. Phys. Lett. A 119, 259-267 (1986) · doi:10.1016/0375-9601(86)90144-1
[67] Dewdney, C., Holland, P.R., Kyprianidis, A.: A quantum potential approach to spin superposition in neutron interferometry. Phys. Lett. A 121, 105-110 (1987) · doi:10.1016/0375-9601(87)90400-2
[68] Home, D., Kaloyerou, P.N.: New twists to Einstein’s two-slit experiment: complementarity vis-a-vis the causal interpretation. J. Phys. A 22, 3253-3266 (1989) · doi:10.1088/0305-4470/22/16/016
[69] Englert, B.-G., Scully, M.O., Süssman, G., Walther, H.: Surrealistic Bohm trajectories. Z. Naturforsch 47a, 1175-1186 (1992)
[70] Drezet, A.: The PBR theorem seen from the eyes of a Bohmian, arXiv:1409.3478v1 [quant-ph] 11 Sept 2014
[71] Kaloyerou, P.N.: The Wootters-Zurek development of Einstein’s two-slit experiment. Found. Phys. 22, 1345-1377 (1992) · doi:10.1007/BF01883665
[72] Drezet, A.: Complementarity and Afshar’s experiment. arXiv:quant-ph/0508091v3, 22 Dec 2005
[73] Drezet, A.: Wave particle duality and the Afshar experiment. Prog. Phys. 1, 57-64 (2011)
[74] von Neumann, J.: Mathematische Grundlagen der Quantemechanik. Springer, Berlin (1932). English translation: Mathematical Foundations of Quantum Mechanics, trans. by R. T. Beyer (Princeton University Press, Princeton, 1955)
[75] London, F.; Bauer, E.; Wheeler, JA (ed.); Zurek, WH (ed.), The theory of observation in quantum mechanics, 217-259 (1983), Princeton
[76] Bohm, D.: Quantum Theory. Prentice-Hall Inc, Upper Saddle River (1951) · Zbl 0048.21802
[77] Wheeler, J.A., Zurek, W.H.: Princeton University Press, Quantum Theory and Measurement. Princeton (1983)
[78] Wigner, EP; Wheeler, JA (ed.); Zurek, WH (ed.), Interpretation of quantum mechanics, 217-259 (1983), Princeton
[79] Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454-462 (1957) · doi:10.1103/RevModPhys.29.454
[80] Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69 (1970) · doi:10.1007/BF00708656
[81] Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267-1305 (2005) · doi:10.1103/RevModPhys.76.1267
[82] Zurek, W.H.: Decoherence and the transition from quantum to classical, Phys. Today 44, 36-44 (1991), see also the updated version available as eprint quant-ph/0306072
[83] Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003) · Zbl 1205.81031 · doi:10.1103/RevModPhys.75.715
[84] Aharonov, Y., Vaidman, L.: Measurement of the Schrödinger wave of a single particle. Phys. Lett. A 178, 38 (1993) · doi:10.1016/0375-9601(93)90724-E
[85] Aharonov, Y., Anandan, J., Vaidman, L.: Meaning of the wave function. Phys. Rev. A 47, 4616 (1993) · doi:10.1103/PhysRevA.47.4616
[86] Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-\[ \frac{1}{2}12\] particle can turn out to be 100. Phy. Rev. Lett. 60(14), 1351-1354 (1988) · doi:10.1103/PhysRevLett.60.1351
[87] Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41(1), 11 (1990) · doi:10.1103/PhysRevA.41.11
[88] Steinberg, A., Feizpour, A., Rozema, L., Mahler, D., Hayat, A.: In praise of weakness. Physics World, March Volume, pp. 35-40 (2013)
[89] Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox, Phys. Rev. Lett. 102(2), 020404 (2009), and arXiv:0810.4229
[90] Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys. 11, 033011 (2009) · doi:10.1088/1367-2630/11/3/033011
[91] Bose, J.C.: Collected Physical Papers, pp. 44-49. Longmans and Green, London (1927) · JFM 52.0039.07
[92] Sommerfeld, A.: Optics, pp. 32-33. Academic Press, New York (1964)
[93] Zeilinger, A.: General properties of lossless beam splitters in interferometry. Am. J. Phys. 49, 882-883 (1981) · doi:10.1119/1.12387
[94] Campos, R.A., Saleh, B.E., Teich, M.C.: Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 40, 1371-1384 (1989) · doi:10.1103/PhysRevA.40.1371
[95] Loudon, R.: The Quantum Theory of Light, 3rd edn., p. 212. Oxford University Press, Oxford (2000) · Zbl 1009.81003
[96] Unnikrishnan, C.S., Murthy, S.A.: Some comments on the two prism tunnelling experiment. Phys. Lett. A 221, 1-4 (1996) · doi:10.1016/0375-9601(96)00559-2
[97] Dirac, P.A.M.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1958) · Zbl 0080.22005
[98] Tan, S.M., Walls, D.F., Collet, M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252-255 (1991) · doi:10.1103/PhysRevLett.66.252
[99] Kastner, R.E.: Why the Afshar experiment does not refute complementarity. Hist. Philos. Mod. Phys. 36, 649-658 (2005) · Zbl 1222.81278 · doi:10.1016/j.shpsb.2005.04.006
[100] Kastner, R.E.: On visibility in the Afshar two-slit experiment. Found. Phys. 39, 1139-1144 (2009) · doi:10.1007/s10701-009-9329-2
[101] Steuernagel, O.: Afshar’s experiment does not show a violation of complementarity. Found. Phys. 37, 1370-1385 (2007) · Zbl 1127.81307 · doi:10.1007/s10701-007-9153-5
[102] Qureshi, T.: Complementarity and the Afshar experiment. arXiv:quant-ph/0701109v2, 19 Jan 2007 · Zbl 0046.21004
[103] Flores, E.V.: Modified Afshar experiment: calculations. In: Roychoudhuri, C., Kracklauer, A. F., Khrennikov, A.Y. (eds) The Nature of Light: What are Photons? III Proc. SPIE, vol. 7421. San Diego, SPIE pp. 74210W (2009)
[104] Afshar, S.S., Flores, E.V., McDonald, K.F., Knoesel, E.: Paradox in wave-particle duality. Found. Phys. 37, 295-305 (2007) · Zbl 1117.81305 · doi:10.1007/s10701-006-9102-8
[105] Flores, E.V.: Reply to comments of Steuernagel on the Afshar’s Experiment. Found. Phys. 38, 778-781 (2008) · Zbl 1161.81303 · doi:10.1007/s10701-008-9234-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.