×

Estimating a multivariate normal mean with a bounded signal to noise ratio under scaled squared error loss. (English) Zbl 1333.62069

Summary: For normal models with \(X\sim N_p(\theta,\sigma^2 I_p)\), \(S^2\sim\sigma^2\chi^2_k\), independent, we consider the problem of estimating \(\theta\) under scale invariant squared error loss \(\| d-\theta\|^2/\sigma^2\), when it is known that the signal-to-noise ratio \(\|\theta\|/\sigma\) is bounded above by \(m\). Risk analysis is achieved by making use of a conditional risk decomposition and we obtain in particular sufficient conditions for an estimator to dominate either the unbiased estimator \(\delta_{UB}(X)=X\), or the maximum likelihood estimator \(\delta_{ML}(X,S^2)\), or both of these benchmark procedures. The given developments bring into play the pivotal role of the boundary Bayes estimator \(\delta_{BU,0}\) associated with a prior on \((\theta,\sigma^2)\) such that \(\theta|\sigma^2\) is uniformly distributed on the (boundary) sphere of radius \(m\sigma\) and a non-informative \(1/\sigma^2\) prior measure is placed marginally on \(\sigma^2\). With a series of technical results related to \(\delta_{BU,0}\); which relate to particular ratios of confluent hypergeometric functions; we show that, whenever \(m\leq\sqrt{p}\) and \(p\geq 2\), \(\delta_{BU,0}\) dominates both \(\delta_{UB}\) and \(\delta_{ML}\). The finding can be viewed as both a multivariate extension of \(p=1\) result due to [T. Kubokawa, Sankhyā 67, No. 3, 499–525 (2005; Zbl 1192.62062)] and an unknown variance extension of a similar dominance finding due to [É. Marchand and F. Perron, Ann. Stat. 29, No. 4, 1078–1093 (2001; Zbl 1041.62016)]. Various other dominance results are obtained, illustrations are provided and commented upon. In particular, for \(m\leq\sqrt{p/2}\), a wide class of Bayes estimators, which include priors where \(\theta|\sigma^2\) is uniformly distributed on the ball of radius \(m\sigma\) centered at the origin, are shown to dominate \(\delta_{UB}\).

MSC:

62F10 Point estimation
62F15 Bayesian inference
62F30 Parametric inference under constraints
62H12 Estimation in multivariate analysis
62C10 Bayesian problems; characterization of Bayes procedures

References:

[1] Abramowitz, M. and Stegun, I. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York. · Zbl 0171.38503
[2] Eaton, M.L. (1989). Group invariance applications in statistics. Regional Conference Series in Probability and Statistics, vol. 1. Institute of Mathematical Statistics, Hayward, California. · Zbl 0749.62005
[3] Efromovich, S.Y. (1999). Nonparametric curve estimation: Methods, theory and applications. Springer, New York. · Zbl 0935.62039
[4] Fourdrinier, D. and Marchand, É. (2010). On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means. J. Multivariate Anal., 101, 1390–1399. · Zbl 1352.62047 · doi:10.1016/j.jmva.2010.01.011
[5] Giri, N.C. (2004). Multivariate Statistical Analysis. Marcel Dekker, 2nd edition, revised and expanded. · Zbl 1047.62048
[6] Hartigan, J. (2004). Uniform priors on convex sets improve risk. Statist. Probab. Lett., 67, 285–288. · Zbl 1041.62021 · doi:10.1016/j.spl.2004.01.009
[7] Johnstone, I. (2011). Gaussian estimation: sequence and wavelet models, Unpublished manuscript.
[8] Joshi, C.M. and Bissu, S.K. (1996). Inequalities for some special functions. J. Comput. Appl. Math., 69, 251–259. · Zbl 0865.33003 · doi:10.1016/0377-0427(95)00042-9
[9] Kariya, T., Giri, N., and Perron, F. (1988). Invariant estimation of a mean vector {\(\mu\)} of N({\(\mu\)}, {\(\Sigma\)}) with {\(\mu\)}’ {\(\Sigma\)}1 {\(\mu\)}=1, {\(\Sigma\)}1/2 {\(\mu\)}=C or {\(\Sigma\)}={\(\delta\)} 2 {\(\mu\)}’ {\(\mu\)}I. J. Multivariate Anal., 27, 270–283. · Zbl 0649.62046 · doi:10.1016/0047-259X(88)90130-3
[10] Kokologiannaki, C.G. (2012). Bounds for functions involving ratios of Bessel functions. J. Math. Anal. Appl., 385, 737–742. · Zbl 1275.33028 · doi:10.1016/j.jmaa.2011.07.004
[11] Kortbi, O. and Marchand, É. (2012). Truncated linear estimation of a bounded multivariate normal mean, J. Statist. Plann. Inference, 142, 2607–2618. · Zbl 1270.62092 · doi:10.1016/j.jspi.2012.03.022
[12] Kubokawa, T. (1994). A unified approach to improving on equivariant estimators. Ann. Statist., 22, 290–299. · Zbl 0816.62021 · doi:10.1214/aos/1176325369
[13] Kubokawa, T. (2005). Estimation of a mean of a normal distribution with a bounded coefficient of variation. Sankhyā: The Indian Journal of Statistics, 67, 499–525. · Zbl 1192.62062
[14] Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation. Springer-Verlag, 2nd edition. · Zbl 0916.62017
[15] Mandelkern, M. (2002). Setting confidence intervals for bounded parameters with discussion. Statist. Sci., 17, 149–172. · Zbl 1013.62028 · doi:10.1214/ss/1030550859
[16] Marchand, É., Jafari Jozani, M. and Tripathi, Y.M. (2012). On the inadmissibility of various estimators of normal quantiles and on applications to two-sample problems with additional information. Contemporary Developments in Bayesian analysis and Statistical Decision Theory: A Festschrift for William E. Strawderman, Institute of Mathematical Statistics Volume Series, 8, 104–116. · Zbl 1326.62055 · doi:10.1214/11-IMSCOLL808
[17] Marchand, É. and Perron, F. (2001). Improving on the mle of a bounded normal mean. Ann. Statist., 29, 1078–1093. · Zbl 1041.62016 · doi:10.1214/aos/1013699994
[18] Marchand, É. and Strawderman, W.E. (2004). Estimation in restricted parameter spaces: A review. Festschrift for Herman Rubin, IMS Lecture Notes-Monograph Series, 45, pp. 21–44. · Zbl 1268.62030 · doi:10.1214/lnms/1196285377
[19] Marchand, É., and Strawderman, W.E. (2005). On improving on the minimum risk equivariant estimator of a location parameter which is constrained to an interval or a half-interval. Ann. Inst. Statist. Math., 57, 129–143. · Zbl 1082.62029 · doi:10.1007/BF02506883
[20] Marchand, É. and Strawderman, W.E. (2006). On the behaviour of Bayesian credible intervals for some restricted parameter space problems. Recent Developments in Nonparametric Inference and Probability: A Festschrift for Micheal Woodroofe, IMS Lecture Notes-Monograph Series, 50, pp. 112–126. · doi:10.1214/074921706000000635
[21] Marchand, É., and Strawderman, W.E. (2012a). On Bayesian credible sets in restricted parameter space problems and lower bounds for frequentist coverage. (arXiv: 1208.002802) · Zbl 1336.62097
[22] Marchand, É., and Strawderman, W.E. (2012b). A unified minimax result for restricted parameter spaces. Bernoulli, 18, 635–643. · Zbl 1251.49024 · doi:10.3150/10-BEJ336
[23] Marchand, É., Strawderman, W.E., Bosa, K., and Lmoudden, A. (2008). On the frequentist coverage of Bayesian credible intervals for lower bounded means. Electron. J. Stat., 2, 1028–1042. · Zbl 1320.62040 · doi:10.1214/08-EJS292
[24] Moors, J.J.A. (1985). Estimation in Truncated Parameter Spaces. Ph.D. thesis, Tilburg University.
[25] Perron, F. and Giri, N.C. (1990). On the best equivariant estimator of mean of a multivariate normal population. J. Multivariate Anal., 32, 1–16. · Zbl 0681.62049 · doi:10.1016/0047-259X(90)90068-S
[26] Roe, B. and Woodroofe, M. (2000). Setting confidence belts. Phys. Rev. D, 63, 013009/01–09. · doi:10.1103/PhysRevD.63.013009
[27] Watson, G.S. (1983). Statistics on spheres. John Wiley, New York. · Zbl 0646.62045
[28] Zhang, T. and Woodroofe, M. (2003). Credible and confidence sets for restricted parameter spaces. J. Statist. Plann. Inference, 115, 479–490. · Zbl 1030.62019 · doi:10.1016/S0378-3758(02)00170-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.