×

Embedding theorems for Bergman spaces via harmonic analysis. (English) Zbl 1333.46032

In this paper, the authors characterize, in terms of geometric conditions, the positive Borel measures \(\mu \) on the unit disc \(\mathbb{D}\) such that \[ \left( \int \left| f^{(n)}(z)\right| ^{q}d\mu (z)\right) ^{1/q}\leq C\left\| f\right\| _{A_{w}^{p}}, \] where \(n\in \mathbb{N}\cup \{0\},\) \(A_{w}^{p}\) is the Bergman space induced by \(w\) a radial weights such that \(\hat{w}(r)=\int_{r}^{1}w(s)\,ds\) satisfies that \( \hat{w}(r)/\hat{w}(\frac{1+r}{2})\) is bounded and \(0<p,q<\infty\).

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42B35 Function spaces arising in harmonic analysis
30H20 Bergman spaces and Fock spaces

References:

[1] Amar, E., Bonami, A.: Mesures de Carleson d’ordre \[\alpha\] α et solutions au bord de l’équation \[\overline{\partial } \]∂¯. Bull. Soc. Math. France 107, 23-48 (1979) · Zbl 0409.46035
[2] Benedek, A., Panzone, R.: The spaces \[L^p\] Lp, with mixed norm. Duke Math. J. 28, 301-324 (1961) · Zbl 0107.08902 · doi:10.1215/S0012-7094-61-02828-9
[3] Burkholder, D.L., Gundy, R.F., Silverstein, M.L.: A maximal function characterization of the class \[H^p\] Hp. Trans. Am. Math. 157, 137-153 (1971) · Zbl 0223.30048
[4] Cohn, W.S., Verbitsky, I.E.: Factorization of tent spaces and Hankel operators. J. Funct. Anal. 175(2), 308-329 (2000) · Zbl 0968.46022 · doi:10.1006/jfan.2000.3589
[5] Coifman, R.R., Meyer, Y., Stein, E.M.: Some new functions spaces and their applications to Harmonic analysis. J. Funct. Anal. 62(3), 304-335 (1985) · Zbl 0569.42016 · doi:10.1016/0022-1236(85)90007-2
[6] Constantin, O.: Carleson embeddings and some classes of operators on weighted Bergman spaces. J. Math. Anal. Appl. 365(2), 668-682 (2010) · Zbl 1189.46018
[7] Fefferman, C., Stein, E.M.: \[H^p\] Hp spaces of several variables. Acta Math. 129(3-4), 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[8] Jacob, B., Partington, J.R., Pott, S.: On Laplace-Carleson embedding theorems. J. Funct. Anal. 264(3), 783-814 (2013) · Zbl 1267.46040 · doi:10.1016/j.jfa.2012.11.016
[9] Luecking, D.H.: Forward and reverse inequalities for functions in Bergman spaces and their derivatives. Am. J. Math. 107, 85-111 (1985) · Zbl 0584.46042 · doi:10.2307/2374458
[10] Luecking, D.H.: Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Lond. Math. Soc. 63(3), 595-619 (1991) · Zbl 0774.42011 · doi:10.1112/plms/s3-63.3.595
[11] Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Michigan Math. J. 40(2), 333-358 (1993) · Zbl 0801.46019 · doi:10.1307/mmj/1029004756
[12] Pau, J., Peláez, J.A.: Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights. J. Funct. Anal. 259(10), 2727-2756 (2010) · Zbl 1215.46019 · doi:10.1016/j.jfa.2010.06.019
[13] Pavlović, M.: On the Littlewood-Paley \[g\] g-function and Calderon’s area theorem. Expo. Math. 1(31), 169-195 (2013) · Zbl 1277.30044 · doi:10.1016/j.exmath.2013.01.006
[14] Peláez, J.A., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Mem. Am. Math. Soc. 227(1066) (2014) · Zbl 1308.30001
[15] Rochberg, R.; Power, SC (ed.), Decomposition theorems for Bergman spaces and their applications, 225-278 (1985), The Netherlands · Zbl 0594.46020 · doi:10.1007/978-94-009-5374-1_8
[16] Sawyer, E.T.: A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75(1), 1-11 (1982) · Zbl 0508.42023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.