×

Dynamic transitions of generalized Burgers equation. (English) Zbl 1333.35203

Summary: In this article, we study the dynamic transition for the one dimensional generalized Burgers equation with periodic boundary condition. The types of transition are dictated by the sign of an explicitly given parameter \(b\), which is derived using the dynamic transition theory developed by T. Ma and S. Wang [Phase transition dynamics. New York, NY: Springer (2014; Zbl 1285.82004)]. The rigorous result demonstrates clearly the types of dynamics transition in terms of length scale \(l\), dispersive parameter \(\delta\) and viscosity \(\nu\).

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q53 KdV equations (Korteweg-de Vries equations)

Citations:

Zbl 1285.82004
Full Text: DOI

References:

[1] Andronov A., Leontovich E., Gordon I., Maier A.: Theory of Bifurcations of Dynamic Systems on a Plane. Halsted Press, New York (1973) · Zbl 0282.34022
[2] Burgers J.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171-199 (1948) · doi:10.1016/S0065-2156(08)70100-5
[3] Goodman J.: Stability of the kuramoto-sivashinsky and related systems. Comm. Pure Appl. Math. 47(3), 293-306 (1994) · Zbl 0809.35105 · doi:10.1002/cpa.3160470304
[4] Henry, D.: Geometric theory of semilinear parabolic equations. Volumn 840 of Lecture Notes in Mathematics. Springer, New York (1981) · Zbl 0456.35001
[5] Hsia C.-H., Wang X.: On a burgers’ type equation. Dist. Cont. Dyn. Syst. Ser. B 6(5), 1121-1139 (2006) · Zbl 1108.37052 · doi:10.3934/dcdsb.2006.6.1121
[6] Lax P.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia (1973) · Zbl 0268.35062 · doi:10.1137/1.9781611970562
[7] Lighthill M.J., Whitham G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A. 229, 317-345 (1955) · Zbl 0064.20906 · doi:10.1098/rspa.1955.0089
[8] Logan J.: An Introduction to Nonlinear Partial Differential Equations. Wiley, New York (1994) · Zbl 0834.35001
[9] Ma T., Wang S.: Dynamic bifurcation and stability in the rayleigh-benard convection. Commun. Math. Sci. 2(2), 159-183 (2004) · Zbl 1133.76315 · doi:10.4310/CMS.2004.v2.n2.a2
[10] Ma T., Wang S.: Bifurcation Theory and Applications, Vol. 53, World Scientific Series on Nonlinear Science. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005) · Zbl 1085.35001
[11] Ma T., Wang S.: Dynamic bifurcation of nonlinear evolution equations and applications. Chin. Ann. Math. 26(2), 185-206 (2005) · Zbl 1193.37105 · doi:10.1142/S0252959905000166
[12] Ma T., Wang S.: Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, Beijing (2007) · Zbl 1298.35003
[13] Ma, T., Wang, S.: Dynamic model and phase transitions for liquid helium. J. Math. Phys. 49:073304:1-18 (2008) · Zbl 1152.81547
[14] Ma T., Wang S.: Cahn-Hilliard equations and phase transition dynamics for binary system. Dist. Cont. Dyn. Syst. Ser. B 11(3), 741-784 (2009) · Zbl 1169.82004 · doi:10.3934/dcdsb.2009.11.741
[15] Ma T., Wang S.: Phase separation of binary systems. Phys. A Stat. Mech. Appl. 388(23), 4811-4817 (2009) · Zbl 1395.78050 · doi:10.1016/j.physa.2009.07.044
[16] Ma T., Wang S.: Phase transitions for Belousov-Zhabotinsky reactions. Math. Methods Appl. Sci. 34(11), 1381-1397 (2011) · Zbl 1219.35332 · doi:10.1002/mma.1446
[17] Ma T., Wang S.: Phase Transition Dynamics. Springer, New York (2014) · Zbl 1285.82004 · doi:10.1007/978-1-4614-8963-4
[18] Richards P.I.: Shock waves on the highway. Oper. Res. 4, 42-51 (1956) · Zbl 1414.90094 · doi:10.1287/opre.4.1.42
[19] Whitham G.B.: Linear and Nonlinear Waves. Wiley, New York (1999) · Zbl 0940.76002 · doi:10.1002/9781118032954
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.