×

Implicit partitioning methods for unknown parameter sets. In the context of the reduced basis method. (English) Zbl 1333.05248

In this paper, the author generalizes the partitioning concepts developed for deterministic and compact parameter domains to arbitrary, possibly unknown parameter sets. Moreover, the author shows some new implicit partitioning methods which also outperform the existing methods for wide classes of problems even in the setting of known parameter domains. Finally, they give some numerical examples and compare the different methods.

MSC:

05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
78M34 Model reduction in optics and electromagnetic theory
35R60 PDEs with randomness, stochastic partial differential equations

Software:

rbMIT
Full Text: DOI

References:

[1] Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9), 667-672 (2004) · Zbl 1061.65118 · doi:10.1016/j.crma.2004.08.006
[2] Chen, P., Quarteroni, A., Rozza, G.: A weighted empirical interpolation method: a priori convergence analysis and applications. ESAIM: Math. Model. Numer. Anal. 48(4), 943-953 (2014) · Zbl 1304.65097 · doi:10.1051/m2an/2013128
[3] Eftang, J.L., Knezevic, D.J., Patera, A.T.: An hp certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. Syst. 17(4), 395-422 (2011) · Zbl 1302.65223 · doi:10.1080/13873954.2011.547670
[4] Eftang, J.L., Patera, A.T., Rønquist, E.M.: An “<Emphasis Type=”Italic“>hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32(6), 3170-3200 (2010) · Zbl 1228.35097 · doi:10.1137/090780122
[5] Eftang, J.L., Stamm, B.: Parameter multi-domain hp empirical interpolation. Int. J. Numer. Methods Eng. 90(4), 412-428 (2012) · Zbl 1242.65255 · doi:10.1002/nme.3327
[6] Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109-129 (1973) · Zbl 0254.65072 · doi:10.1007/BF01436298
[7] Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-bias approximations of parametrized parabolic partial differential equations. M2AN Math. Model. Numer. Anal. 39(1), 157-181 (2005) · Zbl 1079.65096 · doi:10.1051/m2an:2005006
[8] Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17(4), 423-442 (2011) · Zbl 1302.65221 · doi:10.1080/13873954.2011.547674
[9] Haasdonk, B., Urban, K., Wieland, B.: Reduced basis methods for parametrized partial differential equations with stochastic influences using the Karhunen-Loève expansion. SIAM/ASA J. Uncertain. Quantif. 1, 79-105 (2013) · Zbl 1281.35100 · doi:10.1137/120876745
[10] Maday, Y., Nguyen, N.C., Patera, A.T., Pau, S.H.: A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1), 383-404 (2009) · Zbl 1184.65020 · doi:10.3934/cpaa.2009.8.383
[11] Maday, Y., Stamm, B.: Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces. SIAM J. Sci. Comput. 35(6) (2013) · Zbl 1285.65009
[12] Patera, A.T., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations (2006). Version 1.0, MIT Cambridge MA (2006) · Zbl 1302.65223
[13] Peherstorfer, B., Butnaru, D., Willcox, K., Bungartz, H.J.: Localized discrete empirical interpolation method. SIAM. J. Sci. Comput. 36(1), A168—A192 (2014) · Zbl 1290.65080
[14] Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229-275 (2008) · Zbl 1304.65251 · doi:10.1007/s11831-008-9019-9
[15] Tonn, T.: Reduced-basis method (RBM) for non-affine elliptic parametrized PDEs (motivated by optimization in hydromechanics). Ph.D. thesis Ulm University, Ulm (2012)
[16] Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8-9), 773-788 (2005) · Zbl 1134.76326 · doi:10.1002/fld.867
[17] Wieland, B.: Reduced basis methods for partial differential equations with stochastic influences. Ph.D. thesis, Ulm University (2013) · Zbl 1281.35100
[18] Yano, M., Patera, A.T., Urban, K.: A space-time hp-interpolation-based certified reduced basis method for Burgers’ equation. Math. Models Methods Appl. Sci. 24(09), 1903-1935 (2014) · Zbl 1295.65098 · doi:10.1142/S0218202514500110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.