×

Generic methodology for the probabilistic reliability assessment of some structural properties: a graph theoretical approach. (English) Zbl 1332.93331

Summary: The graphical characterisation of many important structural properties, such as controllability, observability, diagnosability of many kinds of structured systems, uses mainly four types of elementary graphical conditions: connectivity, complete matching, linking and distance conditions. Since structural properties depend on different associations of elementary conditions, it is interesting to study elementary conditions. This paper is the first part of this global approach based on elementary graphical conditions and we choose to study the so-called connectivity and complete matching conditions. Starting from the graphical representation associated with a system, the paper provides Boolean expressions of the connectivity and complete matching conditions based on the edges validity, which can be linked to the physical components operating state. These expressions can then be used to define and compute the reliability of a structural property knowing the reliability of the system physical components. This knowledge can be important during both conception and exploitation stages. The proposed methods are quite intuitive and simple to implement and have basically polynomial complexity orders. This makes our approach well suited to analyse large-scale systems.

MSC:

93E03 Stochastic systems in control theory (general)
05C90 Applications of graph theory
Full Text: DOI

References:

[1] International Electrotechnical Commission, International Electrotechnical Vocabulary. Chapter 191: Dependability and Quality of Service (1990)
[2] DOI: 10.1016/j.automatica.2011.08.048 · Zbl 1235.93050 · doi:10.1016/j.automatica.2011.08.048
[3] DOI: 10.1016/j.automatica.2010.11.003 · Zbl 1207.93013 · doi:10.1016/j.automatica.2010.11.003
[4] DOI: 10.1080/00207170701630396 · Zbl 1148.90003 · doi:10.1080/00207170701630396
[5] Commault C., IFAC SSSC (2007)
[6] DOI: 10.1016/j.automatica.2011.09.021 · Zbl 1235.93078 · doi:10.1016/j.automatica.2011.09.021
[7] DOI: 10.1016/S0005-1098(03)00104-3 · Zbl 1023.93002 · doi:10.1016/S0005-1098(03)00104-3
[8] DOI: 10.1201/b11433-77 · doi:10.1201/b11433-77
[9] DOI: 10.1016/S0005-1098(03)00104-3 · Zbl 1023.93002 · doi:10.1016/S0005-1098(03)00104-3
[10] DOI: 10.4153/CJM-1958-052-0 · Zbl 0091.37404 · doi:10.4153/CJM-1958-052-0
[11] Kaufmann A., Mathematical Models for the Study of the Reliability of Systems (1977)
[12] DOI: 10.1016/j.ress.2005.11.037 · doi:10.1016/j.ress.2005.11.037
[13] Lin C.T, IEEE Transactions on Automatic Control 19 (3) pp 201– (1974) · Zbl 0282.93011 · doi:10.1109/TAC.1974.1100557
[14] DOI: 10.1049/iet-cta.2011.0166 · doi:10.1049/iet-cta.2011.0166
[15] DOI: 10.1137/0325053 · Zbl 0635.93007 · doi:10.1137/0325053
[16] DOI: 10.1007/978-3-642-61586-3 · doi:10.1007/978-3-642-61586-3
[17] DOI: 10.1016/j.epsr.2008.07.003 · doi:10.1016/j.epsr.2008.07.003
[18] Rausand M., System Reliability Theory: Models, Statistical Methods and Applications, 2. ed. (2004) · Zbl 1052.93001
[19] Staroswiecki M, Advances in Control Theory and Applications: Lecture Notes in Control and Information Sciences 353 pp 257– (2006) · doi:10.1007/978-3-540-70701-1_14
[20] Villemeur A, Reliability, Availability, Maintainability and Safety Assessment: Methods and Techniques (1992)
[21] DOI: 10.2478/v10006-012-0010-0 · Zbl 1273.93058 · doi:10.2478/v10006-012-0010-0
[22] DOI: 10.1016/j.engappai.2010.06.002 · doi:10.1016/j.engappai.2010.06.002
[23] DOI: 10.1016/0167-6911(86)90023-X · Zbl 0611.93003 · doi:10.1016/0167-6911(86)90023-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.