×

Conformal correlation functions in the Brownian loop soup. (English) Zbl 1332.82083

Summary: We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

MSC:

82D05 Statistical mechanics of gases
60J65 Brownian motion
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Lawler, G. F.; Werner, W., The Brownian loop soup, Probab. Theory Relat. Fields, 128, 4, 565-588 (2004) · Zbl 1049.60072
[2] Sheffield, S.; Werner, W., Conformal loop ensembles: the Markovian characterization and the loop-soup construction, Ann. Math. (2), 176, 3, 1827-1917 (2012) · Zbl 1271.60090
[3] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, (Selected Works of Oded Schramm, vols. 1, 2. Selected Works of Oded Schramm, vols. 1, 2, Sel. Works Probab. Stat. (2011), Springer: Springer New York), 791-858, [mr1776084] · Zbl 1248.01043
[4] Freivogel, B.; Kleban, M., A conformal field theory for eternal inflation, J. High Energy Phys., 0912, Article 019 pp. (2009)
[5] Freivogel, B.; Kleban, M.; Nicolis, A.; Sigurdson, K., Eternal inflation, bubble collisions, and the disintegration of the persistence of memory, J. Cosmol. Astropart. Phys., 0908, Article 036 pp. (2009)
[6] Maldacena, J. M., The large \(N\) limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113-1133 (1999) · Zbl 0969.81047
[7] Strominger, A., The dS / CFT correspondence, J. High Energy Phys., 0110, Article 034 pp. (2001)
[8] Susskind, L., The Census taker’s hat · Zbl 1181.83147
[9] Smirnov, S., Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., 333, 3, 239-244 (2001) · Zbl 0985.60090
[10] Camia, F.; Newman, C. M., Two-dimensional critical percolation: the full scaling limit, Commun. Math. Phys., 268, 1-38 (Nov. 2006) · Zbl 1117.60086
[11] Camia, F.; Newman, C. M., Critical percolation exploration path and \(SLE_6\): a proof of convergence, Probab. Theory Relat. Fields, 139, 3-4, 473-519 (2007) · Zbl 1126.82007
[12] Camia, F.; Newman, C. M., SLE(6) and CLE(6) from critical percolation, (Pinsky, M.; Birnir, B., Probability, Geometry and Integrable Systems (2008), Cambridge University Press: Cambridge University Press Cambridge), 103-130 · Zbl 1214.82034
[13] Chelkak, D.; Duminil-Copin, H.; Hongler, C.; Kemppainen, A.; Smirnov, S., Convergence of Ising interfaces to Schramm’s SLE curves, C. R. Math. Acad. Sci. Paris, 352, 2, 157-161 (2014) · Zbl 1294.82007
[14] Easther, R.; Giblin, J. T.; Hui, L.; Lim, E. A., A new mechanism for bubble nucleation: classical transitions, Phys. Rev. D, 80, Article 123519 pp. (2009)
[15] Kleban, M.; Krishnaiyengar, K.; Porrati, M., Flux discharge cascades in various dimensions, J. High Energy Phys., 1111, Article 096 pp. (2011) · Zbl 1306.81254
[16] Le Jan, Y., Markov Paths, Loops and Fields, Lect. Notes Math., vol. 2026 (2011), Springer: Springer Heidelberg, Lectures from the 38th Probability Summer School held in Saint-Flour 2008, École d’Été de Probabilités de Saint-Flour [Saint-Flour Probability Summer School] · Zbl 1231.60002
[17] Nacu, Ş.; Werner, W., Random soups, carpets and fractal dimensions, J. Lond. Math. Soc. (2), 83, 3, 789-809 (2011) · Zbl 1223.28012
[18] Werner, W., The conformally invariant measure on self-avoiding loops, J. Am. Math. Soc., 21, 1, 137-169 (2008) · Zbl 1130.60016
[19] Di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory, Grad. Texts Contemp. Phys. (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0869.53052
[20] Arovas, D.; Schrieffer, J.; Wilczek, F.; Zee, A., Statistical mechanics of anyons, Nucl. Phys. B, 251, 117-126 (1985)
[21] Gerry, C. C.; Singh, V. A., Feynman path-integral approach to the Aharonov-Bohm effect, Phys. Rev. D, 20, 2550-2554 (Nov. 1979)
[22] Desbois, J.; Ouvry, S., Algebraic and arithmetic area for \(m\) planar Brownian paths, J. Stat. Mech. Theory Exp., 5, 24 (May 2011) · Zbl 1456.60207
[23] Camia, F., Brownian loops and conformal fields (Jan. 2015)
[24] Garban, C.; Ferreras, J. A.T., The expected area of the filled planar Brownian loop is \(\pi / 5\), Commun. Math. Phys., 264, 797-810 (June 2006) · Zbl 1107.82023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.