×

Second order accurate IMEX methods for option pricing under Merton and Kou jump-diffusion models. (English) Zbl 1331.91191

Summary: In this paper three implicit-explicit (IMEX) time semi-discrete methods, namely IMEX-BDF1, IMEX-BDF2 and CN-LF, are developed for solving parabolic partial integro-differential equations which arise in option pricing theory when the underlying asset follows a jump diffusion process. It is shown that IMEX-BDF2 and CN-LF are stable and second order accurate, whereas IMEX-BDF1 is stable but only first order accurate. After time semi-discretization, the resulting linear differential equations are solved by using a cubic B-spline collocation method. The methods so developed have computational complexity of \(O(MN\log_2(M))\) for Merton model and of \(O(MN)\) for Kou model, where \(N\) denotes the number of time steps and \(M\) the number of collocation points. Some numerical examples, for pricing European options under Merton and Kou jump-diffusion models with constant as well as variable volatility, are presented to demonstrate the stability, convergence and computational complexity of the methods.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI

References:

[1] Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637-654 (1973) · Zbl 1092.91524 · doi:10.1086/260062
[2] Dupire, B.: Pricing with a smile, RISK magazine January, pp. 18-20 (1994) · Zbl 1293.91191
[3] Hull, J., White, A.: The pricing of options with stochastic volatilities. J. Finance 42, 281-300 (1987) · doi:10.1111/j.1540-6261.1987.tb02568.x
[4] Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finance Stud. 6, 327-343 (1993) · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[5] Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Finance Econ. 3, 125-144 (1976) · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[6] Kou, S.G.: A jump-diffusion model for option pricing. Manage Sci. 48, 1086-1101 (2002) · Zbl 1216.91039 · doi:10.1287/mnsc.48.8.1086.166
[7] Madan, D.B., Milne, F.: Option pricing with V. G. Martingale components. Math. Finance 1, 39-55 (1991) · Zbl 0900.90105 · doi:10.1111/j.1467-9965.1991.tb00018.x
[8] Barndorff-Nielsen, E., Mikosch, T., Resnick, S.I.: Lévy Processes: Theory and Applications. Birkhäuser, Boston (2001) · Zbl 0961.00012 · doi:10.1007/978-1-4612-0197-7
[9] Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305-332 (2002) · doi:10.1086/338705
[10] Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton (2004) · Zbl 1052.91043
[11] Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Review of Financial Studies 9, 69-107 (1996) · doi:10.1093/rfs/9.1.69
[12] Andersen, L., Andreasen, J.: Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4, 231-262 (2000) · Zbl 1274.91398 · doi:10.1023/A:1011354913068
[13] Carr, P., Madan, D.B.: Option valuation using the fast Fourier transform. J. Comput. Finance 2, 61-73 (1999)
[14] Amin, K.I.: Jump diffusion option valuation in discrete time. J. Finance 48, 1883-1863 (1993)
[15] Matache, A.-M., von Petersdorff, T., Schwab, C.: Fast deterministic pricing of options on Lévy driven assets, M2AN Math. Model. Numer. Anal. 38, 37-71 (2004) · Zbl 1072.60052 · doi:10.1051/m2an:2004003
[16] Briani, M., Chioma, C.L., Natalini, R.: Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numer. Math. 98, 607-646 (2004) · Zbl 1065.65145 · doi:10.1007/s00211-004-0530-0
[17] Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. Siam J. Numer. Anal. 43, 1596-1626 (2005) · Zbl 1101.47059 · doi:10.1137/S0036142903436186
[18] d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contigent claims under jump diffusion processes. IMA J. Numer. Anal. 25, 87-112 (2005) · Zbl 1134.91405 · doi:10.1093/imanum/drh011
[19] Tavella, D., Randall, C.: Pricing Financial Instruments: The Finite Difference Method. Wiley, Chichester (2000)
[20] Almendral, A., Oosterlee, C.W.: Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53, 1-18 (2005) · Zbl 1117.91028 · doi:10.1016/j.apnum.2004.08.037
[21] Kwon, Y., Lee, Y.: A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49, 2598-2617 (2011) · Zbl 1232.91712 · doi:10.1137/090777529
[22] Kwon, Y., Lee, Y.: A second-order tridiagonal method for American options under jump-diffusion models. SIAM J. Sci. Comput. 33, 1860-1872 (2011) · Zbl 1227.91034 · doi:10.1137/100806552
[23] Chen, F., Shen, J., Yu, H.: A new spectral element method for pricing european options under the Black-Scholes and Merton jump diffusion models. J. Sci. Comput. 52, 499-518 (2012) · Zbl 1254.91745 · doi:10.1007/s10915-011-9556-5
[24] Wilmott, P.: Derivatives: The Theory and Practice of Financial Engineering. Wiley, West Sussex (1998)
[25] Garroni, M. G., Menaldi, J. L.: Green functions for second order parabolic integro-differential problems, Pitman Res. Notes Math. Ser., (1992) · Zbl 0806.45007
[26] Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797-823 (1995) · Zbl 0841.65081 · doi:10.1137/0732037
[27] de Boor, C.: A Practical Guide to Splines, (revised edition). Springer, New York (2001) · Zbl 0987.65015
[28] Carr, P., Mayo, A.: On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13(4), 353-372 (2007) · doi:10.1080/13518470701201512
[29] Toivanen, J.: Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 30, 1949-1970 (2008) · Zbl 1178.35225 · doi:10.1137/060674697
[30] Naimark, M. A.: Linear Differential Equations, Part I, English Transl. by E.R. Dawson, ed. by W.N. Everitt. Ungar, New York (1967) · Zbl 0219.34001
[31] Kadalbajoo, M.K., Tripathi, L.P., Arora, P.: A robust nonuniform B-spline collocation method for solving the generalized Black-Scholes equation. IMA J. Numer. Anal. 34(1), 252-278 (2014) · Zbl 1293.91191 · doi:10.1093/imanum/drs053
[32] Clavero, C.; Jorge, JC; Lisbona, F.; Miller, JJH (ed.), Uniformly convergent schemes for singular perturbation problems combining alternating directions and exponential fitting techniques, 33-52 (1993), Dublin · Zbl 0791.65064
[33] Gonzalez, C., Palencia, C.: Stability of time-stepping methods for abstract time-dependent parabolic problems. SIAM J. Numer. Anal. 35, 973-989 (1998) · Zbl 0923.65027 · doi:10.1137/S0036142995283412
[34] Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17, 809-814 (2004) · Zbl 1063.65081 · doi:10.1016/j.aml.2004.06.010
[35] Salmi, S., Toivanen, J.: IMEX schemes for pricing options under jump-diffusion models. Appl. Numer. Math. 84, 33-45 (2014) · Zbl 1291.91234 · doi:10.1016/j.apnum.2014.05.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.