×

Dust in the York canonical basis of ADM tetrad gravity: the problem of vorticity. (English) Zbl 1331.83005

Summary: Brown’s formulation of dynamical perfect fluids in Minkowski space-time is extended to ADM tetrad gravity in globally hyperbolic, asymptotically Minkowskian space-times. For the dust, we get the Hamiltonian description in closed form in the York canonical basis, where we can separate the inertial gauge variables of the gravitational field in the non-Euclidean 3-spaces of global non-inertial frames from the physical tidal ones. After writing the Hamilton equations of the dust, we identify the sector of irrotational motions and the gauge fixings forcing the dust 3-spaces to coincide with the 3-spaces of the non-inertial frame. The role of the inertial gauge variable York time (the remnant of the clock synchronization gauge freedom) is emphasized. Finally, the Hamiltonian Post-Minkowskian linearization is studied. This formalism is required when one wants to study the Hamiltonian version of cosmological models (for instance back-reaction as an alternative to dark energy) in the York canonical basis.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C40 Gravitational energy and conservation laws; groups of motions
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
53Z05 Applications of differential geometry to physics
83C10 Equations of motion in general relativity and gravitational theory
70H05 Hamilton’s equations
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83A05 Special relativity

References:

[1] D. Alba and L. Lusanna , Gen. Relat. Grav. 39 , 2149 ( 2007 ) , arXiv: gr-qc/0604086v2 [arXiv] . genRefLink(16, ’rf1’, ’10.1007
[2] D. Alba and L. Lusanna , Canad. J. Phys. 90 , 1017 ( 2012 ) , arXiv: 0907.4087 [arXiv] . genRefLink(16, ’rf2’, ’10.1139
[3] D. Alba and L. Lusanna , Canad. J. Phys. 90 , 1077 ( 2012 ) , arXiv: 1003.5143 [arXiv] . genRefLink(16, ’rf3’, ’10.1139
[4] D. Alba and L. Lusanna , Canad. J. Phys. 90 , 1131 ( 2012 ) , arXiv: 1009.1794 [arXiv] . genRefLink(16, ’rf4’, ’10.1139
[5] J. Isenberg and J. E. Marsden , J. Geom. Phys. 1 , 85 ( 1984 ) . genRefLink(16, ’rf5’, ’10.1016
[6] L. Lusanna and M. Pauri, General covariance and the objectivity of space-time point-events, talk at the Oxford Conference on Spacetime Theory, arXiv: gr-qc/0503069; Explaining Leibniz equivalence as difference of non-inertial appearances: Dissolution of the hole argument and physical individuation of point-events, His. Philos. Mod. Phys. 37 (2006) 692, arXiv: gr-qc/0604087; The physical role of gravitational and gauge degrees of freedom in general relativity. I: Dynamical synchronization and generalized inertial effects, 38 (2006) 187, arXiv: gr-qc/0403081; II: Dirac versus Bergmann observables and the objectivity of space-time, Gen. Relat. Grav. 38 (2006) 229, arXiv: gr-qc/0407007; Dynamical emergence of instantaneous 3-spaces in a class of models of general relativity, to appear in the book Relativity and the Dimensionality of the World, ed. A. van der Merwe (Springer Series Fundamental Theories of Physics), arXiv: gr-qc/0611045 .
[7] L. Lusanna and M. Villani, Hamiltonian expression of curvature tensors in the York canonical basis: (I) Riemann tensor and Ricci scalars, Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450052, arXiv: 1401.1370; (II) Weyl tensor, Weyl scalars, Weyl eigenvalues and the problem of the observables of the gravitational field, Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450053, arXiv: 1401.1375 . · Zbl 1301.83030
[8] T. Buchert , Gen. Relat. Grav. 40 , 467 ( 2008 ) , arXiv: 0707.2153 [arXiv] . genRefLink(16, ’rf8’, ’10.1007
[9] J. Larena , Phys. Rev. D 79 , 084006 ( 2009 ) , arXiv: 0902.3159 [arXiv] . genRefLink(16, ’rf9’, ’10.1103
[10] J. D. Brown , Class. Quantum Grav. 10 , 1579 ( 1993 ) . genRefLink(16, ’rf10’, ’10.1088
[11] L. Lusanna and D. Nowak-Szczepaniak , Int. J. Mod. Phys. A 15 , 4943 ( 2000 ) . [Abstract] genRefLink(128, ’rf11’, ’000166136500004’);
[12] D. Alba and L. Lusanna , Int. J. Mod. Phys. A 19 , 3025 ( 2004 ) , arXiv: hep-th/020903 [arXiv] . [Abstract] genRefLink(128, ’rf12’, ’000223091800006’);
[13] D. Alba and L. Lusanna, Charged particles and the electro-magnetic field in non-inertial frames: I. Admissible 3+1 splittings of Minkowski spacetime and the non-inertial rest frames, Int. J. Geom. Meth. Phys. 7 (2010) 33, arXiv: 0908.0213; II. Applications: Rotating frames, Sagnac effect, Faraday rotation, wrap-up effect, Int. J. Geom. Meth. Phys. 7 (2010) 185, arXiv: 0908.0215 . · Zbl 1187.83037
[14] L. Lusanna , Gen. Relat. Grav. 33 , 1579 ( 2001 ) , arXiv: gr-qc/0101048 [arXiv] . genRefLink(16, ’rf14’, ’10.1023
[15] I. A. Brown, J. Behrend and K. A. Malik, Gauges and cosmological backreaction, J. Cosmol. Astropart. Phys. 0911 (2009) 027, arXiv: 0903.3264; O. Umeh, J. Larena and C. Clarkson, The Hubble rate in averaged cosmology, J. Cosmol. Astropart. Phys. 1103 (2011) 029, arXiv: 1011.3959 .
[16] G. F. R. Ellis and H. van Elst, Cosmological models, Cargese Lectures 1998, NATO Adv. Stud. Inst. Ser. C. Math. Phys. Sci. 541 (1999) 1, arXiv: gr-qc/9812046; C. G. Tsagas, A. Challinor and R. Maartens, Relativistic cosmology and large-scale structure, Phys. Rep. 465 (2008) 61, arXiv: 0705.4397 .
[17] R. Maartens, Is the universe homogeneous? Philos. Trans. R. Soc. A 369 (2011) 5115, arXiv: 1104.1300; C. Clarkson and R. Maartens, Inhomogeneity and the foundations of concordance cosmology, Class. Quantum Grav. 27 (2010) 124008, arXiv: 1005.2165 .
[18] T. Buchert , Gen. Relat. Grav. 32 , 105 ( 2000 ) , arXiv: gr-qc/9906015 [arXiv] . genRefLink(16, ’rf18’, ’10.1023
[19] T. Buchert , Gen. Relat. Grav. 32 , 105 ( 2000 ) , arXiv: gr-qc/9906015 [arXiv] . genRefLink(16, ’rf19’, ’10.1023
[20] J. Plebański and A. Krasiński , An Introduction to General Relativity and Cosmology ( Cambridge University Press , Cambridge, UK , 2006 ) . genRefLink(16, ’rf20’, ’10.1017 · Zbl 1103.83001
[21] L. Lusanna, Canonical ADM tetrad gravity: From metrological inertial gauge variables to dynamical tidal dirac observables, Int. J. Geom. Meth. Mod. Phys. 12 (2015) 1530001, arXiv: 1108.3224v2; From clock synchronization to dark matter as a relativistic inertial effect, Lecture at the Black Objects in Supergravity, School BOSS2011, Frascati, May 9-13, 2011, arXiv: 1205.2481, Springer Proceedings in Physics, Vol. 144 (Spinger, Berlin, 2013), pp. 267-343 .
[22] R. J. van den Hoogen, Averaging spacetime: Where do we go from here?, Proc. 12th Marcel Grossmann Meeting, eds. T. Damour, R. T. Jantzen and R. Ruffini (World Scientific, Paris, 2012) p. 578, arXiv: 1003.4020 [arXiv] .
[23] D. Alba, L. Lusanna and M. Pauri, Multipolar expansions for closed and open systems of relativistic particles, J. Math. Phys. 46 (2005) 062505, arXiv: hep-th/0402181; D. Alba, L. Lusanna and M. Pauri, New directions in non-relativistic and relativistic rotational and multipole kinematics for N-body and continuous systems, in Atomic and Molecular Clusters: New Research, ed. Y. L. Ping (Nova Science, New York, 2006), arXiv: hep-th/0505005 . · Zbl 1110.83003
[24] W. G. Dixon, Extended objects in general relativity: Their description and motion, in Isolated Gravitating Systems in General Relativity, Proceedings of the International School of Physics ”Enrico Fermi”, Course 67, ed. J. Ehlers (North-Holland, Amsterdam, 1979), p. 156; W. G. Dixon, Description of extended bodies by multipole moments in special relativity, J. Math. Phys. 8 (1967) 1591; W. G. Dixon, Mathisson’s new mechanics: its aims and realisation, Acta Phys. Pol. B Proc. Suppl. 1 (2008) 27; J. Ehlers and E. Rundolph, Dynamics of extended bodies in general relativity: Center-of-mass description and quasi-rigidity, Gen. Relat. Grav. 8 (1977) 197; W. Beiglboeck, The center of mass in einstein’s theory of gravitation, Commun. Math. Phys. 5 (1967) 106; R. Schattner, The center of mass in general relativity, Gen. Relat. Grav. 10 (1978) 377; The Uniqueness of the Center of Mass in General Relativity, 10 (1979) 395; J. Ehlers and R. Geroch, Equation of motion of small bodies in relativity, Ann. Phys. 309 (2004) 232; J. Steinhoff and D. Puetzfeld, Multipolar equations of motion for extended test bodies in general relativity, Phys. Rev. D 81 (2010) 044019, arXiv: 0909.3756 .
[25] S. Dain and G. Nagy , Phys. Rev. D 65 , 084029 ( 2002 ) , arXiv: gr-qc/0201091 [arXiv] . genRefLink(16, ’rf25’, ’10.1103
[26] L. Lusanna and S. Russo , Gen. Relat. Grav. 34 , 189 ( 2002 ) , arXiv: gr-qc/0102074 [arXiv] . genRefLink(16, ’rf26’, ’10.1023
[27] M. P. Ryan Jr. and L. C. Shepley , Homogeneous Relativistic Cosmologies ( Princeton University Press , Princeton , 1975 ) .
[28] L. Blanchet , T. Damour and G. Schaefer , Mon. Not. R. Astron. Soc. 242 , 289 ( 1990 ) . genRefLink(16, ’rf28’, ’10.1093
[29] A. M. Anile , Relativistic Fluids and Magnetofluids ( Cambridge University Press , Cambridge , 1989 ) . genRefLink(16, ’rf29’, ’10.1007
[30] W. Israel , Relativistic Fluid Dynamics , Lecture Notes in Mathematics 1385 , eds. A. Anile and Y. Choquet-Bruhat ( Springer , Berlin , 1989 ) .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.