×

Wigner functions for noncommutative quantum mechanics: a group representation based construction. (English) Zbl 1331.81171

Summary: This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group \(\operatorname{G}_{\mathrm{NC}}\), which is the three fold central extension of the abelian group of \(\mathbb{R}^{4}\). These representations have been exhaustively studied in earlier papers. The group \(\operatorname{G}_{\mathrm{NC}}\) is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity – both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only. {
©2015 American Institute of Physics}

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
22E70 Applications of Lie groups to the sciences; explicit representations
19C09 Central extensions and Schur multipliers
81R60 Noncommutative geometry in quantum theory
81S05 Commutation relations and statistics as related to quantum mechanics (general)

References:

[1] Ali, S. T.; Atakishiyev, N. M.; Chumakov, S. M.; Wolf, K. B., The Wigner function for general Lie groups and the wavelet transform, Ann. Henri Poincaré, 1, 685-714 (2000) · Zbl 1024.81015 · doi:10.1007/PL00001012
[2] Ali, S. T.; Krasowska, A. E.; Murenzi, R., Wigner functions from the two-dimensional wavelets group, J. Opt. Soc. Am. A, 17, 2277 (2000) · doi:10.1364/josaa.17.002277
[3] Ali, S. T.; Führ, H.; Krasowska, A. E., Plancherel inversion as unified approach to wavelet transforms and Wigner functions, Ann. Inst. Henri Poincaré, 4, 1015-1050 (2003) · Zbl 1049.81043 · doi:10.1007/s00023-003-0154-4
[4] Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N., Weyl-Wigner formulation of noncommutative quantum mechanics, J. Math. Phys., 49, 072101 (2008) · Zbl 1152.81330 · doi:10.1063/1.2944996
[5] Bastos, C.; Dias, N. C.; Prata, J. N., Wigner measures in noncommutative quantum mechanics, Commun. Math. Phys., 299, 709-740 (2010) · Zbl 1202.81135 · doi:10.1007/s00220-010-1109-5
[6] Chowdhury, S. H. H.; Ali, S. T., The symmetry groups of noncommutative quantum mechanics and coherent state quantization, J. Math. Phys., 54, 032101 (2013) · Zbl 1281.81049 · doi:10.1063/1.4793992
[7] Chowdhury, S. H. H.; Ali, S. T., Triply extended group of translations of \(ℝ^4\) as defining group of NCQM: Relation to various gauges, J. Phys. A: Math. Theor., 47, 085301 (2014) · Zbl 1290.81045 · doi:10.1088/1751-8113/47/8/085301
[8] Chowdhury, S. H. H., On the plethora of representations arising in noncommutative quantum mechanics and an explicit construction of noncommutative 4-tori, J. Math. Phys. · Zbl 1369.81052
[9] Delduc, F.; Duret, Q.; Gieres, F.; Lafrançois, M., Magnetic fields in noncommutative quantum mechanics, J. Phys. Conf. Ser., 103, 012020 (2008) · doi:10.1088/1742-6596/103/1/012020
[10] Duflo, M.; Moore, C. C., On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., 21, 209-243 (1976) · Zbl 0317.43013 · doi:10.1016/0022-1236(76)90079-3
[11] Führ, H., Abstract Harmonic Analysis of Continuous Wavelet Transforms, 1863 (2005) · Zbl 1060.43002
[12] Jing, S. C.; Heng, T. H.; Zuo, F., A new form of Wigner functions on the noncommutative space, Phys. Lett. A, 335, 185-190 (2005) · Zbl 1123.81375 · doi:10.1016/j.physleta.2004.12.021
[13] Kirillov, A. A., Lectures on the Orbit Method (2004) · Zbl 1229.22003
[14] Scholtz, F. G.; Gouba, L.; Hafver, A.; Rohwer, C. M., Formulation, interpretation and application of non-commutative quantum mechanics, J. Phys. A: Math. Theor., 42, 175303 (2009) · Zbl 1162.81393 · doi:10.1088/1751-8113/42/17/175303
[15] Wigner, E. P., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40, 749-759 (1932) · Zbl 0004.38201 · doi:10.1103/PhysRev.40.749
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.