×

A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries. (English) Zbl 1331.76099

Summary: In this study, we assess several interface schemes for stationary complex boundary flows under the direct-forcing immersed boundary-lattice Boltzmann methods (IB-LBM) based on a split-forcing lattice Boltzmann equation (LBE). Our strategy is to couple various interface schemes, which were adopted in the previous direct-forcing immersed boundary methods (IBM), with the split-forcing LBE, which enables us to directly use the direct-forcing concept in the lattice Boltzmann calculation algorithm with a second-order accuracy without involving the Navier-Stokes equation. In this study, we investigate not only common diffuse interface schemes but also a sharp interface scheme. For the diffuse interface scheme, we consider explicit and implicit interface schemes. In the calculation of velocity interpolation and force distribution, we use the 2- and 4-point discrete delta functions, which give the second-order approximation. For the sharp interface scheme, we deal with the exterior sharp interface scheme, where we impose the force density on exterior (solid) nodes nearest to the boundary. All tested schemes show a second-order overall accuracy when the simulation results of the Taylor-Green decaying vortex are compared with the analytical solutions. It is also confirmed that for stationary complex boundary flows, the sharper the interface scheme, the more accurate the results are. In the simulation of flows past a circular cylinder, the results from each interface scheme are comparable to those from other corresponding numerical schemes.

MSC:

76M28 Particle methods and lattice-gas methods
76D25 Wakes and jets
76D17 Viscous vortex flows
Full Text: DOI

References:

[1] Peskin, Flow patterns around heart valves: a numerical method, Journal of Computational Physics 10 pp 251– (1972) · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[2] Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics 25 pp 220– (1977) · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[3] Lai, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, Journal of Computational Physics 160 pp 705– (2000) · Zbl 0954.76066 · doi:10.1006/jcph.2000.6483
[4] Goldstein, Modeling a no-slip boundary with an external force field, Journal of Computational Physics 105 pp 354– (1993) · Zbl 0768.76049 · doi:10.1006/jcph.1993.1081
[5] Saiki, Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, Journal of Computational Physics 123 pp 450– (1996) · Zbl 0848.76052 · doi:10.1006/jcph.1996.0036
[6] Feng, The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, Journal of Computational Physics 195 pp 602– (2004) · Zbl 1115.76395 · doi:10.1016/j.jcp.2003.10.013
[7] Mohd-Yusof, CTR Annual Research Briefs pp 317– (1997)
[8] Fadlun, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, Journal of Computational Physics 161 pp 35– (2000) · Zbl 0972.76073 · doi:10.1006/jcph.2000.6484
[9] Kim, An immersed-boundary finite-volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 pp 132– (2001) · Zbl 1057.76039 · doi:10.1006/jcph.2001.6778
[10] Balaras, Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations, Computers and Fluids 33 pp 375– (2004) · Zbl 1088.76018 · doi:10.1016/S0045-7930(03)00058-6
[11] Gilmanov, A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, Journal of Computational Physics 191 pp 660– (2003) · Zbl 1134.76406 · doi:10.1016/S0021-9991(03)00321-8
[12] Choi, An immersed boundary method for complex incompressible flows, Journal of Computational Physics 224 pp 757– (2007) · Zbl 1123.76351 · doi:10.1016/j.jcp.2006.10.032
[13] Ikeno, Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations, Journal of Computational Physics 226 pp 1485– (2007) · Zbl 1173.76374 · doi:10.1016/j.jcp.2007.05.028
[14] Majumdar, CTR Annual Research Briefs pp 353– (2001)
[15] Iaccarino, Immersed boundary technique for turbulent flow simulations, Applied Mechanics Reviews 56 pp 331– (2003) · doi:10.1115/1.1563627
[16] Tseng, A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational Physics 192 pp 593– (2003) · Zbl 1047.76575 · doi:10.1016/j.jcp.2003.07.024
[17] Ghias, A sharp interface immersed boundary method for compressible viscous flows, Journal of Computational Physics 225 pp 528– (2007) · Zbl 1343.76043 · doi:10.1016/j.jcp.2006.12.007
[18] Sheu, An immersed boundary method for the incompressible Navier-Stokes equations in complex geometry, International Journal for Numerical Methods in Fluids 56 pp 877– (2008) · Zbl 1221.76129 · doi:10.1002/fld.1558
[19] Wang, Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles, International Journal of Multiphase Flow 34 pp 283– (2008) · doi:10.1016/j.ijmultiphaseflow.2007.10.004
[20] Feng, Proteus: a direct forcing method in the simulation of particulate flows, Journal of Computational Physics 202 pp 20– (2005) · Zbl 1076.76568 · doi:10.1016/j.jcp.2004.06.020
[21] Dupuis, An immersed boundary-lattice Boltzmann method for the simulation of the flow past an impulsively started cylinder, Journal of Computational Physics 227 pp 4486– (2008) · Zbl 1136.76041 · doi:10.1016/j.jcp.2008.01.009
[22] Yang, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, Journal of Computational Physics 215 pp 12– (2006) · Zbl 1140.76355 · doi:10.1016/j.jcp.2005.10.035
[23] Silva, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics 189 pp 351– (2003) · Zbl 1061.76046 · doi:10.1016/S0021-9991(03)00214-6
[24] Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics 209 pp 448– (2005) · Zbl 1138.76398 · doi:10.1016/j.jcp.2005.03.017
[25] Su, An immersed boundary technique for simulating complex flows with rigid boundary, Computers and Fluids 36 pp 313– (2007) · Zbl 1177.76299 · doi:10.1016/j.compfluid.2005.09.004
[26] Le, An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Computer Methods in Applied Mechanics and Engineering 197 pp 2119– (2008) · Zbl 1158.76407 · doi:10.1016/j.cma.2007.08.008
[27] Luo, Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method, Physical Review E 76 (2007) · doi:10.1103/PhysRevE.76.066709
[28] Mittal, Immersed boundary methods, Annual Review of Fluid Mechanics 37 pp 239– (2005) · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[29] Chen, Lattice Boltzmann method for fluid flows, Annual Review of Fluid Mechanics 30 pp 329– (1998) · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[30] Yu, Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences 39 pp 329– (2003) · doi:10.1016/S0376-0421(03)00003-4
[31] Niu, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Physics Letters A 354 pp 173– (2006) · Zbl 1181.76111 · doi:10.1016/j.physleta.2006.01.060
[32] Ziegler, Boundary conditions for lattice Boltzmann simulations, Journal of Statistical Physics 71 pp 1171– (1993) · Zbl 0943.82552 · doi:10.1007/BF01049965
[33] Kang SK Hassan YA An immersed boundary-lattice Boltzmann method for large particle sedimentation 2008 181
[34] Wu, Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, Journal of Computational Physics 228 pp 1963– (2009) · Zbl 1243.76081 · doi:10.1016/j.jcp.2008.11.019
[35] Guo, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E 65 (2002) · Zbl 1244.76102 · doi:10.1103/PhysRevE.65.046308
[36] Peskin, Immersed boundary method, Acta Numerica 11 pp 479– (2002) · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[37] Yang, A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, Journal of Computational Physics 228 pp 7821– (2009) · Zbl 1391.76590 · doi:10.1016/j.jcp.2009.07.023
[38] Cheng, Introducing unsteady non-uniform source terms into the lattice Boltzmann model, International Journal for Numerical Methods in Fluids 56 pp 629– (2008) · Zbl 1130.76061 · doi:10.1002/fld.1543
[39] Premnath, Generalized lattice Boltzmann equation with forcing term for computation of wall bounded turbulent flows, Physical Review E 79 (2009) · doi:10.1103/PhysRevE.79.026703
[40] He, Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, Journal of Statistical Physics 87 pp 115– (1997) · Zbl 0937.82043 · doi:10.1007/BF02181482
[41] Luo, Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gas, Physical Review E 62 pp 4982– (2000) · doi:10.1103/PhysRevE.62.4982
[42] Sui, A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-boundaries interactions, International Journal for Numerical Methods in Fluids 53 pp 1727– (2007) · Zbl 1110.76042 · doi:10.1002/fld.1381
[43] Guo, Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chinese Physics 11 pp 366– (2002) · doi:10.1088/1009-1963/11/4/310
[44] Mansy, Quantitative measurements of three-dimensional structures in the wake of a circular cylinder, Journal of Fluid Mechanics 270 pp 277– (1994) · doi:10.1017/S0022112094004271
[45] Barkley, Three-dimensional Floquet stability analysis of the wake of a circular cylinder, Journal of Fluid Mechanics 322 pp 215– (1996) · Zbl 0882.76028 · doi:10.1017/S0022112096002777
[46] Rohde, A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes, International Journal for Numerical Methods in Fluids 51 pp 439– (2006) · Zbl 1276.76060 · doi:10.1002/fld.1140
[47] Wang, Immersed boundary method for the simulation of 2D viscous flow based on vorticity-velocity formulations, Journal of Computational Physics 228 pp 1504– (2009) · Zbl 1252.76054 · doi:10.1016/j.jcp.2008.10.038
[48] Fornberg, A numerical study of steady viscous flow past a circular, Journal of Fluid Mechanics 98 pp 819– (1980) · Zbl 0428.76032 · doi:10.1017/S0022112080000419
[49] Park, Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160, KSME International Journal 12 pp 1200– (1998) · doi:10.1007/BF02942594
[50] Ye, An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, Journal of Computational Physics 156 pp 209– (1999) · Zbl 0957.76043 · doi:10.1006/jcph.1999.6356
[51] Liu, Preconditioned multigrid methods for unsteady incompressible flows, Journal of Computational Physics 139 pp 35– (1998) · Zbl 0908.76064 · doi:10.1006/jcph.1997.5859
[52] Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, Journal of Fluid Mechanics 206 pp 579– (1989) · doi:10.1017/S0022112089002429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.