×

The effect of heat transfer on the nonlinear peristaltic transport of a Jeffrey fluid through a finite vertical porous channel. (English) Zbl 1331.76019

Summary: In this paper we analyze the influence of free convection on nonlinear peristaltic transport of a Jeffrey fluid in a finite vertical porous stratum using the Brinkman model. Heat is generated within the fluid by both viscous and Darcy dissipations. The coupled nonlinear governing equations are solved analytically. The expressions for the temperature, the axial velocity, the local wall shear stress and the pressure gradient are obtained. The effects of various physical parameters such as the Jeffrey parameter \(\lambda_1\), the permeability parameter \(\sigma\) and the heat source/sink parameter \(\beta\) are analyzed through graphs, and the results are discussed in detail. It is observed that the velocity field increases with increasing values of the Jeffrey parameter but it decreases with increasing values of the permeability parameter. It is found that the pressure rise increases with decreasing Jeffrey parameter and increasing permeability parameter. We notice that the effect of the permeability parameter \(\sigma\) is the strongest on the bolus trapping phenomenon. For \(\lambda_1 = 0\), \(N=0\), the results of the present study reduce to the results of D. Tripathi [“Study of transient peristaltic heat flow through a finite porous channel”, Math. Comput. Modelling 57, No. 5–6, 1270–1283 (2013; doi:10.1016/j.mcm.2012.10.030)]. Further the effect of viscous and Darcy dissipations is to reduce the rate of heat transfer in the finite vertical porous channel under peristalsis.

MSC:

76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] 1. N. Ali and T. Hayat, Peristaltic flow of a micropolar fluid in an asymmetric channel, Comput. Math. Appl.55 (2008) 589-608. genRefLink(16, ’S1793524516500236BIB001’, ’10.1016 · Zbl 1137.76007
[2] 2. G. Devi and R. Devanathan, Peristaltic motion of a micropolar fluid, Proc. Indian Acad. Sci.81A (1975) 149-163. · Zbl 0319.76083
[3] 3. M. Elshahed and M. H. Haroun, Peristaltic transport of Johnson-Segalman fluid under the effect of a magnetic field, Math. Probl. Engrg.6 (2005) 663-677. genRefLink(16, ’S1793524516500236BIB003’, ’10.1155 · Zbl 1200.76024
[4] 4. T. Hayat, Y. Wang, A. M. Siddiqui and K. Hutter, Peristaltic motion of Johnson-Segalman fluid in a planar channel, Math. Probl. Engrg.1 (2003) 1-23. genRefLink(16, ’S1793524516500236BIB004’, ’10.1155 · Zbl 1074.76003
[5] 5. Kh. S. Mekheimer, Peristaltic transport of a couple-stress fluid in a uniform and non-uniform channels, Biorheology39 (2002) 755-765. genRefLink(128, ’S1793524516500236BIB005’, ’000179439400005’);
[6] 6. Kh. S. Mekheimer, Peristaltic flow of blood under effect of a magnetic fluid in non-uniform channels, Appl. Math. Comput.153 (2004) 763-777. genRefLink(16, ’S1793524516500236BIB006’, ’10.1016
[7] 7. D. Srinivasacharya, M. Mishra and A. R. Rao, Peristaltic transport of a micropolar fluid in a tube, Acta Mech.161 (2003) 165-178. genRefLink(128, ’S1793524516500236BIB007’, ’000182930400003’); · Zbl 1064.76010
[8] 8. M. Kothandapani and S. Srinivas, Peristaltic transport of a Jeffery fluid under the effect of magnetic field in an asymmetric channel, Int. J. Nonlinear Mech.43 (2008) 915-924. genRefLink(16, ’S1793524516500236BIB008’, ’10.1016 · Zbl 1217.76105
[9] 9. J. C. Misra and S. K. Pandey, Peristaltic transport of a non-Newtonian fluid with a peripheral layer, Int. J. Engrg. Sci.37 (1999) 1841-1858. genRefLink(16, ’S1793524516500236BIB009’, ’10.1016
[10] 10. M. Mishra and A. R. Rao, Peristaltic transport of a power law fluid in a porous tube, J. Non-Newtonian Fluid Mech.121 (2004) 163-174. genRefLink(16, ’S1793524516500236BIB010’, ’10.1016
[11] 11. N. S. Akbar and S. Nadeem, Peristaltic flow of a Phan-Thien-Tanner nanofluid in a diverging tube, Heat Transfer – Asian Res.41(1) (2012) 10-12. genRefLink(16, ’S1793524516500236BIB011’, ’10.1002
[12] 12. S. Sreenadh, P. Lakshminarayana and G. Sucharitha, Peristaltic flow of micropolar fluid in an asymmetric channel with permeable walls, Int. J. Appl. Math. Mech.7(20) (2011) 18-37.
[13] 13. K. Vajravelu, S. Sreenadh, K. Rajinikanth and C. Lee, Peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls, Nonlinear Anal. Real World Appl.13(6) (2012) 2804-2822. genRefLink(16, ’S1793524516500236BIB013’, ’10.1016
[14] 14. M. V. Subba Reddy, A. Ramachandra Rao and S. Sreenadh, Peristaltic motion of a power law fluid in an asymmetric channel, Int. J. Nonlinear Mech.42 (2007) 1153-1161. genRefLink(16, ’S1793524516500236BIB014’, ’10.1016
[15] 15. G. Sucharitha, S. Sreenadh and P. Lakshminarayana, Nonlinear peristaltic transport of a conducting Prandtl fluid in a porous asymmetric channel, Int. J. Engrg. Res. Technol.1(10) (2012) 1-10. · Zbl 1305.76009
[16] 16. K. Vajravelu, S. Sreenadh, G. Sucharitha and P. Lakshminarayana, Peristaltic transport of a conducting Jeffrey fluid in an inclined asymmetric channel, Int. J. Biomath.7(6) (2014) 1450064, 25 pp. [Abstract] genRefLink(128, ’S1793524516500236BIB016’, ’000345584100005’); · Zbl 1305.76009
[17] 17. S. Sreenadh, P. Lakshminarayana, M. Arun Kumar and G. Sucharitha, Effect of MHD on peristaltic transport of a pseudoplastic fluid in an asymmetric channel with porous medium, Int. J. Math. Sci. Engrg. Appl. (IJMSEA)8(5) (2014) 27-40.
[18] 18. P. Lakshminarayana, S. Sreenadh and G. Sucharitha, Effect of slip and heat transfer on peristaltic transport of a Jeffrey fluid in a vertical asymmetric porous channel, Adv. Appl. Sci. Res.6(2) (2015) 107-118. · Zbl 1331.76019
[19] 19. K. Vajravelu, G. Radhakrishnamacharya and V. Radhakrishnamurty, Peristaltic flow and heat transfer in a vertical porous annulus, with long wavelength approximation, Int. J. Nonlinear Mech.42 (2007) 754-759. genRefLink(16, ’S1793524516500236BIB019’, ’10.1016 · Zbl 1200.76192
[20] 20. T. Hayat, N. Ali and S. Asghar, Hall effects on peristaltic flow of a Maxwell fluid in a porous medium, Phys. Lett. A363 (2007) 397-403. genRefLink(16, ’S1793524516500236BIB020’, ’10.1016 · Zbl 1197.76126
[21] 21. S. Srinivas and M. Kothandapani, Peristaltic transport in an asymmetric channel with heat transfer – A note, Int. Comm. Heat Mass Transfer35 (2008) 514-522. genRefLink(16, ’S1793524516500236BIB021’, ’10.1016
[22] 22. S. Srinivas and M. Kothandapani, The influence of heat and mass transfer on MHD peristaltic flow through a porous space with complaint walls, Appl. Math. Comput.213 (2009) 197-208. genRefLink(16, ’S1793524516500236BIB022’, ’10.1016 · Zbl 1165.76052
[23] 23. Kh. S. Mekheimer and Y. Abd Elmaboud, The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope, Phys. Lett. A372 (2008) 1657-1665. genRefLink(16, ’S1793524516500236BIB023’, ’10.1016
[24] 24. K. Vajravelu, S. Sreenadh and P. Lakshminarayana, The influence of heat transfer on peristaltic transport of a Jeffrey fluid in a vertical porous stratum, Commun. Nonlinear Sci. Numer. Simulat.16 (2011) 3107-3125. genRefLink(16, ’S1793524516500236BIB024’, ’10.1016 · Zbl 1343.76073
[25] 25. D. Tripathi, Study of transient peristaltic heat flow through a finite porous channel, Math. Comput. Model.57 (2013) 1270-1283. genRefLink(16, ’S1793524516500236BIB025’, ’10.1016
[26] 26. J. C. Misra and S. K. Pandey, A mathematical model for esophageal swallowing of a food bolus, Math. Comput. Model.33 (2001) 997-1009. genRefLink(16, ’S1793524516500236BIB026’, ’10.1016
[27] 27. D. Tripathi, A mathematical model for swallowing of food bolus through the esophagus under the influence of heat transfer, Int. J. Thermal Sci.51 (2012) 91-101. genRefLink(16, ’S1793524516500236BIB027’, ’10.1016
[28] 28. Y. V. K. Ravikumar, S. V. H. N. Krishna Kumar, M. V. Ramanamurthi and S. Sreenadh, Unstudy peristaltic pumping in a finite length tube with permeable wall, J. Fluids Engrg.132(10) (2010) 101,201-101,204. genRefLink(16, ’S1793524516500236BIB028’, ’10.1115
[29] 29. M. Li and J. G. Brasseur, Non-steady peristaltic transport in finite length tubes, J. Fluid Mech.248 (1993) 129-151. genRefLink(16, ’S1793524516500236BIB029’, ’10.1017
[30] 30. P. Lakshminarayana, S. Sreenadh and G. Sucharitha, Peristaltic pumping of a conducting fluid in a channel with a porous peripheral layer, Adv. Appl. Sci. Res.3(5) (2012) 2890-2899.
[31] 31. E. N. Maraj, N. S. Akbar and S. Nadeem, Mathematical study for peristaltic flow of Williamson fluid in a curved channel, Int. J. Biomath.8(1) (2015) 1550005, 10 pp. [Abstract] genRefLink(128, ’S1793524516500236BIB031’, ’000348201200005’); · Zbl 1306.76054
[32] 32. T. Hayat, A. Tanveer, H. Yasmin and F. Alsaadi, Simultaneous effects of Hall current and thermal deposition in peristaltic transport of Eyring-Powell fluid, Int. J. Biomath.8(2) (2015) 1550024, 28 pp. [Abstract] genRefLink(128, ’S1793524516500236BIB032’, ’000350333200010’); · Zbl 1395.76117
[33] 33. N. S. Akbar and A. W. Butt, Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia, Int. J. Biomath.7(6) (2014) 1450066, 14 pp. · Zbl 1305.76135
[34] 34. V. P. Rathod and D. Laxmi, Effects of heat transfer on the peristaltic MHD flow of a Bingham fluid through a porous medium in a channel, Int. J. Biomath.7(6) (2014) 1450060, 20 pp. [Abstract] genRefLink(128, ’S1793524516500236BIB034’, ’000345584100001’); · Zbl 1322.76069
[35] 35. A. Riaz, S. Nadeem, R. Ellahi and N. S. Akbar, Series solution of unsteady peristaltic flow of a Carreau fluid in small intestines, Int. J. Biomath.7(5) (2014) 1450049, 9 pp. [Abstract] genRefLink(128, ’S1793524516500236BIB035’, ’000341015000003’); · Zbl 1302.76230
[36] 36. G. C. Sankad and G. Radhakrishnamacharya, Effect of magnetic field on the peristaltic transport of couple stress fluid in a channel with wall properties, Int. J. Biomath.4(3) (2011) 365-378. [Abstract] genRefLink(128, ’S1793524516500236BIB036’, ’000295410000007’); · Zbl 1404.76295
[37] 37. K. Vajravelu, S. Sreenadh and V. Ramesh Babu, Peristaltic pumping of a Herschel-Bulkley fluid in a channel, Appl. Math. Comput.169 (2005) 726-735. genRefLink(16, ’S1793524516500236BIB037’, ’10.1016 · Zbl 1079.76007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.