×

Orbit trap rendering methods for generating colorful symmetric images in three-dimensional space. (English) Zbl 1331.68255

Summary: Automatic generation of colorful symmetric images is considered by using orbit trap rendering methods. Orbit traps with appropriate symmetries are constructed to determine the density functions for the creation of colorful images. Furthermore, complete proofs of the orbit trap methods compatible with equivariant functions with respect to the tetrahedral and cubic symmetries are given.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
28A80 Fractals
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Software:

CUDA
Full Text: DOI

References:

[1] Pickover, C.A.: Computers and the Imagination. St. Martin’s, New York (1992)
[2] Chung, K.W., Wang, B.N.: Tessellations with symmetries of the triangle groups from dynamics. Int. J. Bifurcat. Chaos 13(11), 3505-3518 (2003) · Zbl 1057.37046 · doi:10.1142/S0218127403008624
[3] Lu, J., Ye, Z.X., Zou, Y.R.: Automatic generation of colorful patterns with wallpaper symmetries from dynamics. Vis. Comput. 23(6), 445-449 (2007) · doi:10.1007/s00371-007-0116-9
[4] Lu, J., Zou, Y.R., Li, W.X.: Colorful patterns with discrete planar symmetries from dynamical systems. Fractals 18(1), 35-43 (2010) · Zbl 1407.37039 · doi:10.1142/S0218348X10004671
[5] Lu, J., Zou, Y.R., Liu, Z.Y., Li, W.X.: Colorful symmetric images in three-dimensional space from dynamical systems. Fractals 20(1), 53-60 (2012) · Zbl 1245.00022 · doi:10.1142/S0218348X12500053
[6] Field, M., Golubitsky, M.: Symmetry in Chaos. Oxford University Press, New York (1992) · Zbl 0765.58001
[7] Carter, N.C., Eagles, R.L., Hahn, A.C., Grimes, S.M., Reiter, C.A.: Chaotic attractors with discrete planar symmetries. Chaos Solit. Fract. 9(12), 2031-2054 (1998) · Zbl 0934.37032 · doi:10.1016/S0960-0779(97)00157-4
[8] Brisson, G.F., Gartz, K.M., McCune, B.J., O’Brien, K.P., Reiter, C.A.: Symmetric attractors in three-dimensional space. Chaos Solit. Fract. 7(7), 1033-1051 (1996) · Zbl 1080.37513 · doi:10.1016/0960-0779(95)00094-1
[9] Reiter, C.A.: Attractors with the symmetry of the \[n\] n-cube. Exp. Math. 5(4), 327-336 (1996) · Zbl 0885.58043 · doi:10.1080/10586458.1996.10504597
[10] Reiter, C.A.: Chaotic attractors with the symmetry of the tetrahedron. Comput. Graph. 21(6), 841-848 (1997) · doi:10.1016/S0097-8493(97)00062-9
[11] Reiter, C.A.: Chaotic attractors with the symmetry of the dodecahedron. Vis. Comput. 15, 211-215 (1999) · Zbl 0958.37009 · doi:10.1007/s003710050173
[12] Dumont, J.P., Heiss, F.J., Jones, K.C., Reiter, C.A., Vislocky, L.M.: \[n\] n-Dimensional chaotic attractors with crystallographic symmetry. Chaos Solit. Fract. 12(4), 761-84 (2001) · Zbl 1024.37018
[13] Field, M.: Designer chaos. Comput. Aided Des. 33(5), 349-365 (2001) · Zbl 1176.93040
[14] Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Westview, New York (2003) · Zbl 1025.37001
[15] Wang, X.Y., Jin, T.: Hyperdimensional generalized M-J sets in hypercomplex number space. Nonlinear Dyn. 73(1-2), 843-852 (2013) · doi:10.1007/s11071-013-0836-5
[16] Wang, X.Y., Ge, F.: Quasi-sine Fibonacci M set with perturbation. Nonlinear Dyn. 69(4), 1765-1779 (2012) · Zbl 1263.37067 · doi:10.1007/s11071-012-0384-4
[17] Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57(3), 431-439 (2009) · Zbl 1176.93040 · doi:10.1007/s11071-008-9453-0
[18] Sun, Y.Y., Wang, X.Y.: Quaternion M set with none zero critical points. Fractals 17(4), 427-439 (2009) · Zbl 1183.28017 · doi:10.1142/S0218348X09004569
[19] Wang, X.Y., Wang, Z., Lang, Y.H., Zhang, Z.F.: Noise perturbed generalized Mandelbrot sets. J. Math. Anal. Appl. 347(1), 179-187 (2008) · Zbl 1143.37039 · doi:10.1016/j.jmaa.2008.04.032
[20] Wang, X.Y., Sun, Y.Y.: The general quaternionic M-J sets on the mapping \[z\leftarrow z^a+c (a\in \mathbb{N})\] z←za+c(a∈N). Comput. Math. Appl. 53(11), 1718-1732 (2007) · Zbl 1152.28321 · doi:10.1016/j.camwa.2007.01.014
[21] Carlson, P.W.: Two artistic orbit trap rendering methods for Newton M-set fractals. Comput. Graph. 23(6), 925-931 (1999) · doi:10.1016/S0097-8493(99)00123-5
[22] Ye, R.S.: Another choice for orbit traps to generate artistic fractal images. Comput. Graph. 26(4), 629-633 (2002) · doi:10.1016/S0097-8493(02)00096-1
[23] Lu, J., Ye, Z.X., Zou, Y.R., Ye, R.S.: Orbit trap rendering methods for generating artistic images with crystallographic symmetries. Comput. Graph. 29(5), 794-801 (2006)
[24] Zou, Y.R., Li, W.X., Lu, J., Ye, R.S.: Orbit trap rendering method for generating artistic images with cyclic or dihedral symmetry. Comput. Graph. 30, 470-473 (2006) · doi:10.1016/j.cag.2006.02.009
[25] Armstrong, M.A.: Groups and Symmetry. Spring, New York (1988) · Zbl 0663.20001 · doi:10.1007/978-1-4757-4034-9
[26] Cross, M., Pfister, H.: Point-Based Graphics. Morgan Kaufmann, Burlington (2007)
[27] Cook, S.: CUDA programming: a developer’s guide to parallel computing with GPUs. Morgan Kaufmann, Waltham (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.