×

The Euler-Galerkin finite element method for a nonlocal coupled system of reaction-diffusion type. (English) Zbl 1331.65138

Summary: We study a system of parabolic equations with nonlocal nonlinearity of the following type \[ \begin{cases} u_t - a_1(l_1(u), l_2(v)) \Delta u + \lambda_1 | u |^{p - 2} u = f_1(x, t) & \text{in } \Omega \times] 0, T] \\ v_t - a_2(l_1(u), l_2(v)) \Delta v + \lambda_2 | v |^{p - 2} v = f_2(x, t) & \text{in } \Omega \times] 0, T] \\ u(x, t) = v(x, t) = 0 & \text{on } \partial \Omega \times] 0, T] \\ u(x, 0) = u_0(x), \, v(x, 0) = v_0(x) & \text{in } \Omega, \end{cases} \] where \(a_1\) and \(a_2\) are Lipschitz-continuous positive functions, \(l_1\) and \(l_2\) are continuous linear forms, \(\lambda_1, \lambda_2 \geq 0\) and \(p \geq 2\).
We prove the convergence of a linearized Euler-Galerkin finite element method and obtain the order of convergence in the \(L_2\) norm. Finally we implement and simulate the presented method in Matlab’s environment.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
35K51 Initial-boundary value problems for second-order parabolic systems
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

Matlab
Full Text: DOI

References:

[1] Chipot, M.; Lovat, B., Some remarks on non local elliptic and parabolic problems, Nonlinear Anal., 30, 7, 4619-4627 (1997) · Zbl 0894.35119
[2] Corrêa, F. J.S. A.; Menezes, S. D.B.; Ferreira, J., On a class of problems involving a nonlocal operator, Appl. Math. Comput., 147, 2, 475-489 (2004) · Zbl 1086.35038
[3] Ackleh, A. S.; Ke, L., Existence-uniqueness and long time behavior for a class of nonlocal nonlinear parabolic evolution equations, Proc. Amer. Math. Soc., 128, 12, 3483-3492 (2000), (electronic) · Zbl 0959.35086
[4] Raposo, C. A.; Sepúlveda, M.; Villagrán, O. V.; Pereira, D. C.; Santos, M. L., Solution and asymptotic behaviour for a nonlocal coupled system of reaction-diffusion, Acta Appl. Math., 102, 1, 37-56 (2008) · Zbl 1145.35391
[5] Eymard, R.; Gallouët, T.; Herbin, R.; Michel, A., Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math., 92, 1, 41-82 (2002) · Zbl 1005.65099
[6] Simsen, J.; Ferreira, J., A global attractor for a nonlocal parabolic problem, Nonlinear Stud., 21, 3, 405-416 (2014) · Zbl 1302.35066
[8] Yin, Z.; Xu, Q., A fully discrete symmetric finite volume element approximation of nonlocal reactive flows in porous media, Math. Probl. Eng. (2013) · Zbl 1296.76097
[9] Sidi Ammi, M. R.; Torres, D. F.M., Numerical analysis of a nonlocal parabolic problem resulting from thermistor problem, Math. Comput. Simulation, 77, 2-3, 291-300 (2008) · Zbl 1149.65083
[10] Thomée, V., (Galerkin Finite Element Methods for Parabolic Problems. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics (2006), Springer-Verlag New York, Inc.: Springer-Verlag New York, Inc. Secaucus, NJ, USA) · Zbl 1105.65102
[11] Ciarlet, P. G., (The Finite Element Method for Elliptic Problems. The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40 (2002), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA), reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)] · Zbl 0999.65129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.