×

Pattern formation in a reaction-diffusion-advection system with wave instability. (English) Zbl 1331.35178

Summary: In this paper, we show by means of numerical simulations how new patterns can emerge in a system with wave instability when a unidirectional advective flow (plug flow) is added to the system. First, we introduce a three variable model with one activator and two inhibitors with similar kinetics to those of the Oregonator model of the Belousov-Zhabotinsky reaction. For this model, we explore the type of patterns that can be obtained without advection, and then explore the effect of different velocities of the advective flow for different patterns. We observe standing waves, and with flow there is a transition from out of phase oscillations between neighboring units to in-phase oscillations with a doubling in frequency. Also mixed and clustered states are generated at higher velocities of the advective flow. There is also a regime of “waving Turing patterns” (quasi-stationary structures that come close and separate periodically), where low advective flow is able to stabilize the stationary Turing pattern. At higher velocities, superposition and interaction of patterns are observed. For both types of patterns, at high velocities of the advective field, the known flow distributed oscillations are observed.{
©2012 American Institute of Physics}

MSC:

35K57 Reaction-diffusion equations
35K40 Second-order parabolic systems
Full Text: DOI

References:

[1] DOI: 10.1039/b210932h · doi:10.1039/b210932h
[2] DOI: 10.1038/225535b0 · doi:10.1038/225535b0
[3] DOI: 10.1098/rstb.1952.0012 · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[4] DOI: 10.1103/PhysRevE.55.6690 · doi:10.1103/PhysRevE.55.6690
[5] DOI: 10.1103/PhysRevE.55.6690 · doi:10.1103/PhysRevE.55.6690
[6] DOI: 10.1103/PhysRevE.48.R4191 · doi:10.1103/PhysRevE.48.R4191
[7] DOI: 10.1103/PhysRevLett.87.228301 · doi:10.1103/PhysRevLett.87.228301
[8] DOI: 10.1103/PhysRevE.62.113 · doi:10.1103/PhysRevE.62.113
[9] DOI: 10.1103/PhysRevE.62.113 · doi:10.1103/PhysRevE.62.113
[10] DOI: 10.1039/b107627b · doi:10.1039/b107627b
[11] DOI: 10.1039/b107627b · doi:10.1039/b107627b
[12] DOI: 10.1039/b921918h · doi:10.1039/b921918h
[13] DOI: 10.1103/PhysRevE.74.046203 · doi:10.1103/PhysRevE.74.046203
[14] DOI: 10.1103/PhysRevE.81.066211 · doi:10.1103/PhysRevE.81.066211
[15] DOI: 10.1103/PhysRevE.81.066211 · doi:10.1103/PhysRevE.81.066211
[16] DOI: 10.1209/epl/i2004-10409-9 · doi:10.1209/epl/i2004-10409-9
[17] DOI: 10.1209/epl/i2004-10409-9 · doi:10.1209/epl/i2004-10409-9
[18] DOI: 10.1103/PhysRevLett.101.084503 · doi:10.1103/PhysRevLett.101.084503
[19] DOI: 10.1103/PhysRevLett.101.084503 · doi:10.1103/PhysRevLett.101.084503
[20] DOI: 10.1063/1.3656248 · doi:10.1063/1.3656248
[21] DOI: 10.1016/S0009-2509(99)00318-8 · doi:10.1016/S0009-2509(99)00318-8
[22] DOI: 10.1016/S0009-2509(99)00318-8 · doi:10.1016/S0009-2509(99)00318-8
[23] DOI: 10.1016/S0009-2509(99)00318-8 · doi:10.1016/S0009-2509(99)00318-8
[24] DOI: 10.1063/1.440418 · doi:10.1063/1.440418
[25] J. Carballido-Landiera, ” Pattern formation in compartmented systems,” Ph.D. thesis, (University of Santiago de Compostela, 2011).
[26] DOI: 10.1103/PhysRevE.79.026110 · doi:10.1103/PhysRevE.79.026110
[27] DOI: 10.1103/PhysRevLett.90.118302 · doi:10.1103/PhysRevLett.90.118302
[28] DOI: 10.1039/c2sm07032d · doi:10.1039/c2sm07032d
[29] DOI: 10.1021/j100344a016 · doi:10.1021/j100344a016
[30] DOI: 10.1039/c0cp02656e · doi:10.1039/c0cp02656e
[31] DOI: 10.1021/ac070033y · doi:10.1021/ac070033y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.