×

A geometric Schur functor. (English) Zbl 1331.20061

Summary: We give geometric descriptions of the category \(C_k(n,d)\) of rational polynomial representations of \(\mathrm{GL}_n\) over a field \(k\) of degree \(d\) for \(d\leq n\), the Schur functor and Schur-Weyl duality. The descriptions and proofs use a modular version of Springer theory and relationships between the equivariant geometry of the affine Grassmannian and the nilpotent cone for the general linear groups. Motivated by this description, we propose generalizations for an arbitrary connected complex reductive group of the category \(C_k(n,d)\) and the Schur functor.

MSC:

20G43 Schur and \(q\)-Schur algebras
20G05 Representation theory for linear algebraic groups
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
17B08 Coadjoint orbits; nilpotent varieties
20C30 Representations of finite symmetric groups

References:

[1] Achar, P., Henderson, A.: Geometric Satake, Springer correspondence, and small representations. Preprint. arXiv:1108.4999 (2012) · Zbl 1319.17003
[2] Achar, P., Henderson, A., Juteau, D., Riche, S.: Weyl group actions on the Springer sheaf. Proceedings of London Mathematical Society first published online December 11, 2013. doi:10.1112/plms/pdt055 · Zbl 1308.17008
[3] Achar, P., Henderson, A., Juteau, D., Riche, S.: Modular generalized Springer correspondence I: the general linear group. Preprint. arXiv:1307.2702 (2013) · Zbl 1396.17002
[4] Achar, P., Henderson, A., Riche, S.: Geometric Satake, Springer correspondence, and small representations II. Preprint. arXiv:1205.5089 (2012) · Zbl 1407.17008
[5] Achar, P., Mautner, C.: Sheaves on nilpotent cones, Fourier transform, and a geometric Ringel duality. Preprint. arXiv:1207.7044 (2012) · Zbl 1383.17005
[6] Beĭlinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Analyse et topologie sur les espaces singuliers. I (Luminy, 1981), volume 100 of Astérisque, pp. 5-171. Soc. Math. France, Paris (1982)
[7] Beĭlinson, A., Drinfel’d, V.: Quantization of Hitchin integrable system and Hecke eigensheaves. Preprint. http://www.math.uchicago.edu/mitya/langlands/hitchin/BD-hitchin.pdf · Zbl 0634.20019
[8] Brylinski, J.-L.: Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. Astérisque, 140-141, 3-134. Géométrie et analyse microlocales (1986) · Zbl 0624.32009
[9] Chriss, N., Ginzburg, V.: Representation theory and complex geometry. Birkhäuser Boston Inc., Boston (1997) · Zbl 0879.22001
[10] Carter, R.W., Lusztig, G.: On the modular representations of the general linear and symmetric groups. Math. Z. 136, 193-242 (1974) · Zbl 0298.20009 · doi:10.1007/BF01214125
[11] Doty, S.R., Erdmann, K., Nakano, D.K.: Extensions of modules over Schur algebras, symmetric groups and Hecke algebras. Algebr. Represent. Theory 7(1), 67-100 (2004) · Zbl 1084.20004 · doi:10.1023/B:ALGE.0000019454.27331.59
[12] Donkin, S.: On Schur algebras and related algebras, II. J. Algebr. 111(2), 354-364 (1987) · Zbl 0634.20019 · doi:10.1016/0021-8693(87)90222-5
[13] Donkin, S.: On tilting modules for algebraic groups. Math. Z. 212(1), 39-60 (1993) · Zbl 0798.20035 · doi:10.1007/BF02571640
[14] Ginsburg, V.: Intégrales sur les orbites nilpotentes et représentations des groupes de Weyl. C. R. Acad. Sci. Paris Sér. I Math. 296(5), 249-252 (1983) · Zbl 0544.22009
[15] Ginzburg, V.: Perverse sheaves on a loop group and Langlands duality. Preprint. arXiv:alg-geom/9511007 (1995) · Zbl 0798.20035
[16] Green, J.A.: Polynomial representations of \[{\rm GL}_n\] GLn. Lecture Notes in Mathematics, vol. 830. Springer, Berlin (1980) · Zbl 0451.20037
[17] Hotta, R., Kashiwara, M.: The invariant holonomic system on a semisimple Lie algebra. Invent. Math. 75(2), 327-358 (1984) · Zbl 0538.22013 · doi:10.1007/BF01388568
[18] Hotta, R.: On Springer’s representations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3), 863-876 (1982) 1981 · Zbl 0584.20033
[19] Jantzen, J.C.: Representations of algebraic groups, volume 107 of Mathematical Surveys and Monographs, 2nd edn. American Mathematical Society, Providence (2003) · Zbl 1034.20041
[20] Juteau, D.: Modular Springer correspondence and decomposition matrices. PhD thesis, Université Paris 7 Denis Diderot. arXiv:0901.3671 (2007)
[21] Kleshchev, A.S.: Branching rules for modular representations of symmetric groups I. J. Algebr. 178(2), 493-511 (1995) · Zbl 0854.20013 · doi:10.1006/jabr.1995.1362
[22] Kashiwara, M., Schapira, P.: Sheaves on manifolds, volume 292 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1994) · Zbl 0709.18001
[23] Laszlo, Y., Olsson, M.: Perverse \[t\] t-structure on Artin stacks. Math. Z. 261(4), 737-748 (2009) · Zbl 1188.14002 · doi:10.1007/s00209-008-0348-z
[24] Lusztig, G.: Green polynomials and singularities of unipotent classes. Adv. Math. 42, 169-178 (1981) · Zbl 0473.20029 · doi:10.1016/0001-8708(81)90038-4
[25] Lusztig, G.: Singularities, character formulas, and a \[q\] q-analog of weight multiplicities. Analyse et topologie sur les espaces singuliers. II, III (Luminy, 1981), volume 101-102 of Astérisque, pp. 208-229. Soc. Math. France, Paris (1983) · Zbl 0561.22013
[26] Martin, S.: Schur Algebras and Representation Theory, volume 112 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993) · Zbl 0802.20011
[27] Mautner, C.: Sheaf Theoretic Methods in Modular Representation Theory. PhD thesis, University of Texas at Austin (2010)
[28] Mirković, I.: Character sheaves on reductive Lie algebras. Mosc. Math. J. 4(4), 897-910, 981 (2004) · Zbl 1066.14058
[29] Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95-143 (2007) · Zbl 1138.22013 · doi:10.4007/annals.2007.166.95
[30] Mirković, I., Vybornov, M.: Quiver varieties and Beilinson-Drinfeld Grassmannians of type A. Preprint. arXiv:0712.4160 (2007) · Zbl 1068.14056
[31] Ngô, B.C.: Faisceaux pervers, homomorphisme de changement de base et lemme fondamental de Jacquet et Ye. Ann. Sci. École Norm. Sup. (4) 32(5), 619-679 (1999) · Zbl 1002.11046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.