×

On the smoothness of value functions and the existence of optimal strategies in diffusion models. (English) Zbl 1330.91137

Summary: Studies of dynamic economic models often rely on each agent having a smooth value function and a well-defined optimal strategy. For time-homogeneous optimal control problems with a one-dimensional diffusion, we prove that the corresponding value function must be twice continuously differentiable under Lipschitz, growth, and non-vanishing-volatility conditions. Under similar conditions, the value function of any optimal stopping problem is shown to be (once) continuously differentiable. We also provide sufficient conditions, based on comparative statics and differential methods, for the existence of an optimal control in the sense of strong solutions. The results are applied to growth, experimentation, and dynamic contracting settings.

MSC:

91B55 Economic dynamics
60G40 Stopping times; optimal stopping problems; gambling theory
60J60 Diffusion processes
93E20 Optimal stochastic control
Full Text: DOI

References:

[1] Aliprantis, C.; Border, K., Infinite Dimensional Analysis (2006), Springer-Verlag · Zbl 1156.46001
[2] Ambrosio, L.; Dal Maso, G., A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., 108, 3, 691-702 (1990) · Zbl 0685.49027
[3] Amir, R.; De Castro, L., Nash equilibrium in games with quasi-monotonic best-responses (2013), Working paper
[4] Bailey, P., Nonlinear Two Point Boundary Value Problems (1968), Academic Press · Zbl 0169.10502
[5] Barlow, M., One dimensional stochastic differential equations with no strong solution, J. Lond. Math. Soc., s2-26, 335-347 (1982) · Zbl 0456.60062
[6] Bebernes, J. W., A subfunction approach to a boundary value problem for ordinary differential equations, Pacific J. Math., 13, 4, 1053-1066 (1963) · Zbl 0126.29701
[7] Benveniste, L. M.; Scheinkman, J. A., On the differentiability of the value function in dynamic models of economics, Econometrica, 47, 3, 727-732 (1979) · Zbl 0435.90031
[8] Bergemann, D.; Välimäki, J., Market-diffusion with two-sided learning, RAND J. Econ., 28, 4, 773-795 (1997)
[9] Bergemann, D.; Välimäki, J., Experimentation in markets, Rev. Econ. Stud., 67, 213-234 (2000) · Zbl 1028.91537
[10] Bolton, P.; Harris, C., Strategic experimentation, Econometrica, 67, 2, 349-374 (1999) · Zbl 1023.91500
[11] Borkar, V., Controlled diffusion processes, Probab. Surv., 2, 213-244 (2005) · Zbl 1189.93143
[12] Cherny, A., On the uniqueness in law and the pathwise uniqueness for stochastic differential equations, Theory Probab. Appl., 46, 406-419 (2002) · Zbl 1036.60051
[13] Chistyakov, V., Selections of bounded variations, J. Appl. Anal., 10, 1, 1-82 (2004) · Zbl 1077.26015
[14] Crandall, M.; Lions, P.-L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277, 1, 1-42 (1983) · Zbl 0599.35024
[15] Dayanik, S.; Karatzas, I., On the optimal stopping problem for one-dimensional diffusions, Stoch. Process. Appl., 107, 2, 173-212 (2003) · Zbl 1075.60524
[16] Décamps, J.-P.; Mariotti, T.; Villeneuve, S., Irreversible investment in alternative projects, Econ. Theory, 28, 435-448 (2006) · Zbl 1107.91046
[17] De Coster, C.; Habets, P., Two-Point Boundary Value Problems: Lower and Upper Solutions (2006), Elsevier Science · Zbl 1330.34009
[18] DeMarzo, P.; Fishman, M.; He, Z.; Wang, N., Dynamic agency and the \(q\) theory of investment, J. Finance, 67, 6 (2012)
[19] DeMarzo, P.; Sannikov, Y., Optimal security design and dynamic capital structure in a continuous-time agency model, J. Finance, 61, 2681-2724 (2006)
[20] Dixit, A., Entry and exit decisions under uncertainty, J. Polit. Economy, 97, 620-638 (1989)
[21] Dixit, A., The Art of Smooth Pasting (1993), Academic Press: Academic Press Harwood
[22] Dixit, A., Choosing among alternative discrete investment projects under uncertainty, Econ. Letters, 41, 265-268 (1993) · Zbl 0800.90004
[23] Duffie, D., Dynamic Asset Pricing Theory (2001), Princeton University Press · Zbl 1140.91041
[24] Evans, L. C., Classical solutions of the Hamilton-Jacobi-Bellmann equation of uniformly elliptic operators, Trans. Amer. Math. Soc., 275, 1, 245-255 (1983)
[25] Fleming, W.; Soner, H., Controlled Markov Processes and Viscosity Solutions (1993), Springer Verlag · Zbl 0773.60070
[26] Gilbarg, D.; Trudinger, N., Elliptic Partial Differential Equations of Second Order (2001), Springer Verlag · Zbl 1042.35002
[27] Gittins, J., Bandit processes and dynamic allocation indices, J. Roy. Stat. Soc., 41, 2, 148-177 (1979) · Zbl 0411.62055
[28] Harrison, M.; Taksar, M., Instantaneous control of Brownian motion, Math. Oper. Res., 8, 3, 439-453 (1983) · Zbl 0523.93068
[29] Hartman, P., On boundary value problems for systems of ordinary, nonlinear, second order differential equations, Trans. Amer. Math. Soc., 96, 3, 493-509 (1960) · Zbl 0098.06101
[30] Hartman, P., Ordinary Differential Equations, Classics Appl. Math (2002), SIAM · Zbl 0125.32102
[31] Josephy, M., Composing functions of bounded variation, Proc. Amer. Math. Soc., 83, 354-356 (1981) · Zbl 0475.26005
[32] Jovanovic, B., Job matching and the theory of turnover, J. Polit. Economy, 87, 5, 972-990 (1979), pp. 439-453
[33] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus (1998), Springer
[34] Karlin, S.; Rubin, H., The theory of decision procedures for distributions with monotone likelihood ratio, Ann. Math. Stat., 27, 272-299 (1956) · Zbl 0070.37203
[35] Keller, G.; Rady, S.; Cripps, M., Strategic experimentation with exponential bandits, Econometrica, 73, 1, 39-68 (2005) · Zbl 1152.91333
[36] Kiguradze, I. T., A-priori estimates for the derivatives of bounded functions satisfying second-order differential inequalities, Differ. Uravn., 3, 1043-1052 (1967) · Zbl 0173.09803
[37] Krylov, N., Controlled Diffusion Processes (1980), Springer Verlag · Zbl 0459.93002
[38] Lehmann, E., Comparing location experiments, Ann. Math. Stat., 16, 521-533 (1988) · Zbl 0672.62008
[39] Leland, H., Corporate debt value, bond covenants, and optimal capital structure, J. Finance, 49, 1213-1252 (1994)
[40] Lions, P.-L., Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Commun. Partial Differ. Equ., 8, 11, 1229-1276 (1983) · Zbl 0716.49023
[41] McDonald, R.; Siegel, D., The value of waiting to invest, Quart. J. Econ., 101, 4, 707-727 (1986)
[42] Merton, R., Lifetime portfolio selection under uncertainty: the continuous time case, Rev. Econ. Statist., 51, 247-257 (1969)
[43] Merton, R., Optimum consumption and portfolio rules in a continous time model, J. Econ. Theory, 3, 373-413 (1971) · Zbl 1011.91502
[44] Milgrom, P.; Shannon, C., Monotone comparative statics, Econometrica, 62, 157-180 (1994) · Zbl 0789.90010
[45] Milgrom, P.; Segal, I., Envelope theorems for arbitrary choice sets, Econometrica, 70, 2, 583-601 (2002) · Zbl 1103.90400
[46] Moscarini, G.; Smith, L., The optimal level of experimentation, Econometrica, 69, 6, 1629-1644 (2001) · Zbl 1019.91039
[47] Nakao, S., On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math., 9, 513-518 (1972) · Zbl 0255.60039
[48] Noussair, E. S., On the existence of solutions to nonlinear elliptic boundary value problems, J. Differ. Equ., 34, 3, 482-495 (1979) · Zbl 0435.35037
[49] Øksendal, B.; Sulem, A., Applied Stochastic Control of Jump Diffusions (2007), Springer · Zbl 1116.93004
[50] Peškir, G.; Shiryaev, A., Optimal Stopping and Free-Boundary Problems (2006), Birkhäuser: Birkhäuser Boston · Zbl 1115.60001
[51] Pham, H., Continuous-time Stochastic Control and Optimization with Financial Applications (2009), Springer Verlag · Zbl 1165.93039
[52] Quah, J.; Strulovici, B., Comparative statics, informativeness, and the interval dominance order, Econometrica, 77, 1949-1992 (2009) · Zbl 1182.62013
[53] Quah, J.; Strulovici, B., Aggregating the single crossing property, Econometrica, 80, 2333-2348 (2012) · Zbl 1274.91126
[54] Quah, J.; Strulovici, B., Discounting, values, and decisions, J. Polit. Economy, 121, 896-939 (2013)
[55] Revuz, D.; Yor, M., Continuous Martingales and Brownian motion (2001), Springer Verlag
[56] Rincón-Zapatero, J.; Santos, M., Differentiability of the value function without interiority assumptions, J. Econ. Theory, 144, 5, 1948-1964 (2009) · Zbl 1195.90092
[57] Rincón-Zapatero, J.; Santos, M., Differentiability of the value function in continuous-time economic models (2010), Working paper
[58] Safonov, M. V., On the classical solution of nonlinear elliptic equations of second order, Math. USSR, Izv., 33, 3, 597-612 (1989) · Zbl 0682.35048
[59] Sannikov, Y., A continuous-time version of the principal-agent problem, Rev. Econ. Stud., 75, 3, 957-984 (2008) · Zbl 1141.91612
[60] Schrader, K., Existence theorems for second order boundary value problems, J. Differ. Equ., 5, 572-584 (1969) · Zbl 0172.11302
[61] Shreve, S. E.; Lehoczky, J. P.; Gaver, D. P., Optimal consumption for general diffusions with absorbing and reflecting barriers, SIAM J. Control Optim., 22, 1, 55-75 (1984) · Zbl 0535.93071
[62] Stroock, D.; Varadhan, S., Multidimensional Diffusion Processes (1979), Springer · Zbl 0426.60069
[63] Szydlowski, M., Incentives, project choice and dynamic multitasking (2014), Working paper · Zbl 1427.91100
[64] Topkis, D., Minimizing a submodular function on a lattice, Oper. Res., 26, 305-321 (1978) · Zbl 0379.90089
[65] Touzi, N., Deterministic and Stochastic Control, Application to Finance, Lect. Notes (2010), Départment de Mathematiques Appliquées, Ecole Polytechnique
[67] Veretennikov, A., On strong solutions and explicit formulas for solutions of stochastic integral equations, Mathematics of the USSR. Sbornik, 39, 387-403 (1981) · Zbl 0462.60063
[68] Villeneuve, S., On threshold strategies and the smooth-fit principle for optimal stopping problems, J. Appl. Probab., 44, 1, 181-198 (2007) · Zbl 1134.60338
[69] Yamada, T.; Watanabe, S., On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ., 11, 155-167 (1971) · Zbl 0236.60037
[70] Yong, J.; Zhou, X.-Y., Stochastic Controls (1999), Springer Verlag · Zbl 0943.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.