×

Role of time integration in computing transitional flows caused by wall excitation. (English) Zbl 1330.76098

Summary: Numerical investigation of receptivity and flow transition in spatio-temporal framework have shown the central role of spatio-temporal wave-front (STWF) created by wall excitation for transition of a two-dimensional (2D) zero pressure gradient boundary layer (ZPGBL) in [the first author and S. Bhaumik, “Onset of turbulence from the receptivity stage of fluid flows”, Phys. Rev. Lett. 107, No. 15, Article ID 154501, 5 p. (2011; doi:10.1103/PhysRevLett.107.154501)]. Although the STWF is created by linear mechanism, it is the later nonlinear stage of evolution revealed by the solution of Navier-Stokes equation (NSE), which causes formation of turbulent spots merging together to create fully developed turbulent flow. Thus, computing STWF for ZPGBL from NSE is of prime importance, which has been reported by the present authors following earlier theoretical investigation. Similar computational efforts using NSE by other researchers do not report finding the STWF. In the present investigation we identify the main reason for other researchers to miss STWF, as due to taking a very short computational domain. Secondly, we show that even one takes a long enough domain and detect STWF, use of traditional low accuracy method will not produce the correct dynamics as reported by the first author and Bhaumik [loc. cit.]. The role of time integration plays a very strong role in the dynamics of transitional flows. We have shown here that implicit methods are more error prone, as compared to explicit time integration methods during flow transition. For the present problem, it is noted that the classical Crank-Nicolson method is unstable for 2D NSE. Same error-prone nature will also be noted for hybrid implicit-explicit time integration methods (known as the IMEX methods). One of the main feature of present analysis is to highlight the accuracy of computations by compact schemes used by the present investigators over a significantly longer domain and over unlimited time, as opposed to those reported earlier in the literature for the wall excitation problem. A consequence of taking long streamwise domain enables one to detect special properties of STWF and its nonlinear growth. The main focus of the present research is to highlight the importance of STWF, which is a new class of spatio-temporal solution obtained from the linear receptivity by solving Orr-Sommerfeld equation and nonlinear analysis of NSE.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76F06 Transition to turbulence
Full Text: DOI

References:

[1] Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797-823 (1995) · Zbl 0841.65081 · doi:10.1137/0732037
[2] Bhaumik, S.: Direct numerical simulation of inhomogeneous transitional and turbulent flows. Ph.D. Thesis, IIT-Kanpur (2013)
[3] Charney, J.G., Fjörtoft, R., von Neumann, J.: Numerical integration of barotropic vorticity equation. Tellus 2(4), 237-254 (1950) · doi:10.1111/j.2153-3490.1950.tb00336.x
[4] Crank, J., Nicolson, P.A.: A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Philos. Soc. 43(50), 50-67 (1947) · Zbl 0029.05901 · doi:10.1017/S0305004100023197
[5] Eiseman, P.R.: Grid generation for fluid mechanics computation. Annu. Rev. Fluid Mech. 17, 487-522 (1985) · Zbl 0602.76034 · doi:10.1146/annurev.fl.17.010185.002415
[6] Fasel, H., Konzelmann, U.: Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. J. Fluid Mech. 221, 311-347 (1990) · Zbl 0715.76019 · doi:10.1017/S0022112090003585
[7] Fasel, H., Rist, U., Konzelmann, U.: Numerical investigation of three dimensional development in boundary layer transition. AIAA J. 28, 29-37 (1990) · Zbl 0715.76019 · doi:10.2514/3.10349
[8] Gaster, M., Grant, I.: An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. Roy. Soc. Lond. Ser. A. 347, 253-269 (1975) · doi:10.1098/rspa.1975.0208
[9] Gaster, M.; Sengupta, TK; Ashpis, DE (ed.); Gatski, TB (ed.); Hirsch, R. (ed.), The generation of disturbance in a boundary layer by wall perturbation: the vibrating ribbon revisited once more (1993), Dordrecht
[10] Giraldo, F.X., Kelly, J.F., Constantinescu, E.M.: Implicit-explicit formulations of a three dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comp. (SISC) (in press) · Zbl 1280.86008
[11] Hama, F.R., Nutant, J.: Detailed flow-field observations in the transition process in a thick boundary layer. In: Proceedings of Heat Transfer and Fluid Mechanics Institute Stanford University Press, pp. 77-93 (1963) · Zbl 0114.41802
[12] Hirsch, R.S.: Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J. Comput. Phys. 19, 90-109 (1975) · Zbl 0326.76024 · doi:10.1016/0021-9991(75)90118-7
[13] Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit-explicit high order Runge-Kutta methods to Discontinuous-Galerkin schemes. J. Comput. Phys. 225, 1753-1781 (2007) · Zbl 1123.65097 · doi:10.1016/j.jcp.2007.02.021
[14] Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equation. J. Comput. Phys. 58, 308-322 (1985) · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[15] Klebanoff, P.S., Tidstrom, K.D., Sargent, L.M.: The three dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 1-34 (1962) · Zbl 0131.41901 · doi:10.1017/S0022112062000014
[16] Kovasznay, L.S.G., Komoda, H., Vasudeva, B.R.: Detailed flow-field in transition. In: Proceedings of Heat Transfer and Fluid Mechanics Institute Stanford University Press, pp. 1-26 (1962) · Zbl 0131.41901
[17] Kreiss, H., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199-215 (1972) · doi:10.1111/j.2153-3490.1972.tb01547.x
[18] Lomax, H., Pulliam, T.H., Zingg, D.W.: Fundamentals of CFD. Springer, Berlin (2002) · Zbl 0970.76002
[19] Persson, P.O.: High-order LES simulations using implicit-explicit Runge-Kutta schemes. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2011-684 · Zbl 0131.41901
[20] Pozrikidis, C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, Oxford (2011) · Zbl 1238.76001
[21] Rajpoot, M.K., Sengupta, T.K., Dutt, P.K.: Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys. 229, 3623-3651 (2010) · Zbl 1190.65139 · doi:10.1016/j.jcp.2010.01.018
[22] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003) · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[23] Sayadi, T.: Numerical simulation of controlled transition to developed turbulence in a zero-pressure gradient flat-plate boundary layer. Ph.D. Thesis, Department of Mechanics Engineering, Stanford University (2012)
[24] Sayadi, T., Hamman, C.W., Moin, P.: Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480-509 (2013) · Zbl 1287.76138 · doi:10.1017/jfm.2013.142
[25] Schubauer, G.B., Skramstad, H.K.: Laminar boundary layer oscillations and the stability of laminar flow. J. Aeronaut. Sci. 14(2), 69-78 (1947) · doi:10.2514/8.1267
[26] Sengupta, T.K.: Impulse response of laminar boundary layer and receptivity. In: Taylor, C. (ed.) In: Proceedings of the 7th International Conference Numerical Methods for Laminar and Turbulent Layers (1991)
[27] Sengupta, T.K.: High Accuracy Computing Methods: Fluid flows and Wave Phenomena. Cambridge University Press, Cambridge (2013) · Zbl 1454.76002 · doi:10.1017/CBO9781139151825
[28] Sengupta, T.K., Ballav, M., Nijhawan, S.: Generation of Tollmien-Schlichting waves by harmonic excitation. Phys. Fluids 6(3), 1213-1222 (1994) · Zbl 0826.76025 · doi:10.1063/1.868290
[29] Sengupta, T.K., Bhaumik, S.: Onset of turbulence from the receptivity stage of fluid flows. Phys. Rev. Lett. 107, 154501 (2011) · doi:10.1103/PhysRevLett.107.154501
[30] Sengupta, T.K., Bhaumik, S., Bhumkar, Y.G.: Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85, 026308 (2012) · doi:10.1103/PhysRevE.85.026308
[31] Sengupta, T.K., Bhaumik, S., Bose, R.: Direct numerical simulation of transitional mixed convection flows: viscous and inviscid instability mechanisms. Phys. Fluids 25, 094102 (2013) · doi:10.1063/1.4821149
[32] Sengupta, T.K., Bhumkar, Y., Rajpoot, M.K., Suman, V.K., Saurabh, S.: Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035-9065 (2012) · Zbl 1245.65112 · doi:10.1016/j.amc.2012.03.030
[33] Sengupta, T.K., De, S., Sarkar, S.: Vortex-induced instability of an incompressible wall-bounded shear layer. J. Fluid Mech. 493, 277-286 (2003) · Zbl 1068.76023 · doi:10.1017/S0022112003005822
[34] Sengupta, T.K., Dipankar, A.: A comparative study of time advancement methods for solving Navier-Stokes equations. J. Sci. Comput. 21, 225-250 (2004) · Zbl 1060.76084 · doi:10.1023/B:JOMP.0000030076.74896.d7
[35] Sengupta, T.K., Dipankar, A., Sagaut, P.: Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211-1218 (2007) · Zbl 1125.65337 · doi:10.1016/j.jcp.2007.06.001
[36] Sengupta, T.K., Rajpoot, M.K., Bhumkar, Y.G.: Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47(1), 144-154 (2011) · Zbl 1271.76219 · doi:10.1016/j.compfluid.2011.03.003
[37] Sengupta, T.K., Rao, A.K., Venkatasubbaiah, K.: Spatio-temporal growing wave-fronts in spatially stable boundary layers. Phys. Rev. Lett. 96, 224,504(1)-224,504(4) (2006) · doi:10.1103/PhysRevLett.96.224504
[38] Sengupta, T.K., Rao, A.K., Venkatasubbaiah, K.: Spatio-temporal growth of disturbances in a boundary layer and energy based receptivity analysis. Phys. Fluids 18, 094,101(1)-094,101(9) (2006) · Zbl 1185.76581 · doi:10.1063/1.2348732
[39] Swartz, B., Wendroff, B.: The relative efficiency of finite-difference and finite element methods. I: hyperbolic problems and splines. SIAM J. Numer. Anal. 11(5), 979-993 (1974) · Zbl 0294.65055 · doi:10.1137/0711076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.