×

An analytic benchmark solution to the problem of a generalized plane strain hollow cylinder made of micromorphic plastic porous metal and subjected to axisymmetric loading conditions. (English) Zbl 1330.74039

Summary: We provide a full analytical solution for the problem of a generalized plane strain circular hollow cylinder subjected to axisymmetric loading conditions. The matrix of the cylinder obeys a micromorphic plasticity theory as proposed by M. Gologanu et al. [in: Continuum micromechanics. Wien: Springer. 61–130 (1997; Zbl 0882.73004)]. The solution gives explicit expressions for the displacement, the strain and its gradient, as well as the ordinary and generalized stress fields. The newly derived solution satisfies the equilibrium equations and is shown to be an extension of the solution of the same model problem using (von Mises) classical plasticity theory.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74G05 Explicit solutions of equilibrium problems in solid mechanics

Citations:

Zbl 0882.73004
Full Text: DOI

References:

[1] Hall EO, J Iron Steel Inst 174 pp 25– (1950)
[2] Van der Giessen E, Modell Simul Mater Sci Eng 3 pp 689– (1995) · doi:10.1088/0965-0393/3/5/008
[3] Cosserat E, Théorie des corps déformables (1906)
[4] Mindlin RD, Arch Ration Mech Anal 12 pp 51– (1964)
[5] DOI: 10.1016/0020-7683(65)90006-5 · doi:10.1016/0020-7683(65)90006-5
[6] DOI: 10.1137/0125053 · Zbl 0273.73061 · doi:10.1137/0125053
[7] Tvergaard V, Int J Solids Struct 34 pp 2221– (1997) · Zbl 0942.74620 · doi:10.1016/S0020-7683(96)00140-0
[8] Tvergaard V, Int J Solids Struct 32 pp 1063– (1995) · Zbl 0866.73060 · doi:10.1016/0020-7683(94)00185-Y
[9] Enakoutsa K, Comput Methods Appl Mech Eng 196 pp 1946– (2007) · Zbl 1173.74388 · doi:10.1016/j.cma.2006.10.003
[10] Gologanu M, Continuum micromechanics (CISM Courses and Lectures, vol. 377) pp 61– (1997) · doi:10.1007/978-3-7091-2662-2_2
[11] Gurson AL, ASME J Eng Mater Technol 99 pp 2– (1977) · doi:10.1115/1.3443401
[12] Enakoutsa K, Modéle non-locaux en rupture ductile des métaux (2007)
[13] Enakoutsa K, Eur J Mech, A: Solids 28 pp 445– (2009) · Zbl 1158.74461 · doi:10.1016/j.euromechsol.2008.11.004
[14] Enakoutsa K, Mech Res Commun 49 pp 1– (2013) · doi:10.1016/j.mechrescom.2012.12.009
[15] DOI: 10.1016/j.ijsolstr.2007.04.022 · Zbl 1166.74318 · doi:10.1016/j.ijsolstr.2007.04.022
[16] Tvergaard V, Int J Fract 17 pp 389– (1981) · doi:10.1007/BF00036191
[17] Tvergaard V, Acta Metall 32 pp 157– (1984) · doi:10.1016/0001-6160(84)90213-X
[18] Gao XL, Mech Res Commun 30 pp 411– (2003) · Zbl 1065.74566 · doi:10.1016/S0093-6413(03)00044-2
[19] Gao XL, Int J Solids Struct 40 pp 6445– (2004)
[20] DOI: 10.1177/1081286512462835 · Zbl 1367.74044 · doi:10.1177/1081286512462835
[21] Collin F, Int J Solids Struct 46 pp 3927– (2009) · Zbl 1183.74082 · doi:10.1016/j.ijsolstr.2009.05.017
[22] Enakoutsa K, Theor Appl Mech Lett (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.