×

Uniform pointwise bounds for matrix coefficients of unitary representations on semidirect products. (English) Zbl 1330.22011

Let \(k\) be a local field of characteristic zero. Let \(G\) be the \(k\)-points of a connected linear algebraic group defined over \(k\). If \(k= \mathbb{R}\) is the field of real numbers, we also allow \(G\) to be a real Lie group. Let \(B\) be a minimal parabolic subgroup containing a maximally \(k\)-split torus \(D\). We pick a positive root system \(\Phi^+\) of \(G\) with respect to \((B,D)\) and let \(\{\alpha,\dots,\alpha_n\}\) denote its simple roots. Let \(\delta_B\) denote its modular function. Let \(K\) be a good maximal compact subgroup of \(G\).
Let \((\rho,V)\) be a rational representation of \(G\) over a finite-dimensional \(k\)-vector space \(V\). We assume that \(V\) is an excellent representation of \(G\), i.e. the fixed points \(V^{G_i}=0\) for every non-compact simple factor \(G_i\) of \(G\). In order to simplify the notations, we also assume that \(V\) is an irreducible representation of \(G\) in this review. Let \(\lambda\) and \(\rho\) be the highest and lowest weights of \(V\) with respect to \(D\). Finally we form the group \(\ltimes_\rho V\).
Let \((\Pi,W)\) be a unitary representation of \(G\ltimes V\). This paper only considers such \(\Pi\) that the set of \(V\)-fixed vectors is zero, i.e. \(W^V=0\). The main result is to give bounds on the rate of growth of the matrix coefficients of \(K\)-finite vectors in \(\Pi\).
In order to describe the main theorem, we need to introduce more notations. Let \(r\) denote the number of roots appearing in \(V\). Let \(q_1= 3^{1-r}\) if \(\dim V>1\) and \(q_1= 3^{2-r}\) if \(\dim V=1\). We write \(\delta_B= \sum^n_{i=1} d_i\alpha_i\) and \({q\over 2}(\lambda-\rho)= \sum^n_{i=1} e_i\alpha_i\) as rational linear combinations of simple roots. Let \(m\) be an integer such that \(2m\geq\max_{1\leq i\leq n}\{{d_i\over e_i}\}\). Let \(\Xi_G\) denote the Harish-Chandra Xi-function. It is a bi-\(K\)-invariant function on \(G\). The main Theorem 1.4 states that \((\Pi,W)\) is \((K,\Xi^{{1\over m}}_G)\) bounded on \(G\), i.e. for a pair of \(K\)-finite vectors \(v,w\in W\), we have \[ \langle\Pi(g)v,w\rangle\leq \sqrt{\text{dim\,Span}\{Kv\}} \sqrt{\text{dim\,Span}\{Kw\}} \Xi^{{1\over m}}_G(g) \] for all \(g\in G\).
The author proves the main theorem by first showing that \(\Pi\) is strong \(L^{2m+\varepsilon}(G)\) and then applying a result by M. Cowling et al. [J. Reine Angew. Math. 387, 97–110 (1988; Zbl 0638.22004)] which implies that the representation is \((K,\Xi^{{1\over m}}_G)\) bounded on \(G\). By modifying the proofs for various specific situations, the author is able to obtain better bounds if \(G= \text{SL}_3\) or \(G\) has \(k\)-split rank 1.

MSC:

22D10 Unitary representations of locally compact groups
22E46 Semisimple Lie groups and their representations
22E50 Representations of Lie and linear algebraic groups over local fields
22E30 Analysis on real and complex Lie groups
22E35 Analysis on \(p\)-adic Lie groups

Citations:

Zbl 0638.22004

References:

[1] Baldoni-Silva, M. W., Unitary dual of \(S p(n, 1), n \geqslant 2\), Duke Math. J., 48, 549-583 (1981) · Zbl 0496.22019
[2] Bekka, B.; De La Harpe, P.; Valette, A., Kazhdan’s Property \((T)\), New Math. Monogr., vol. 11 (2008), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1146.22009
[3] Bernstein, I. N., All reductive \(p\)-adic groups are tame, Funct. Anal. Appl., 8, 91-93 (1974) · Zbl 0298.43013
[4] Borel, A.; Tits, J., Groupes réductifs, Publ. Math. Inst. Hautes Études Sci., 27, 55-151 (1965) · Zbl 0145.17402
[5] Bruhat, F., Distributions sur un groupe localement compact et applications àl’ étude des représentations des groupes \(p\)-adiques, Bull. Soc. Math. France, 89, 43-75 (1961) · Zbl 0128.35701
[6] Cowling, M., Sur le coefficients des représentations unitaries des groupes de Lie simple, Lecture Notes in Math., vol. 739, 132-178 (1979), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0417.22010
[7] Cowling, M.; Haggerup, U.; Howe, R. E., Almost \(L^2\) matrix coefficients, J. Reine Angew. Math., 387, 97-110 (1988) · Zbl 0638.22004
[8] Dixmier, J., \(C^\ast \)-Algebras (1977), North Holland: North Holland Amsterdam-New York-Oxford · Zbl 0366.17007
[9] Eymard, P., L’algèbre de Fourier d’un groupe localment compact, Bull. Soc. Math. France, 92, 181-236 (1964) · Zbl 0169.46403
[10] Fell, J., Weak containment and induced representation, Canad. J. Math., 14, 237-268 (1962) · Zbl 0138.07301
[11] Folland, G., A Course in Abstract Harmonic Analysis (1995), CRC Press: CRC Press Boca Raton · Zbl 0857.43001
[12] Folland, G., Real Analysis: Modern Techniques and Their Applications (1999), John Wiley and Sons, Inc.: John Wiley and Sons, Inc. New York · Zbl 0924.28001
[13] Harish-Chandra, Harmonic analysis on reductive \(p\)-adic groups, (Harmonic Analysis on Homogeneous Spaces. Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., vol. 26 (1973), Amer. Math. Soc.: Amer. Math. Soc. Providence), 167-192 · Zbl 0289.22018
[14] de la Harpe, P.; Valette, A., La propriété (T) pour les groupes localement compacts, Astérisque, 175 (1989) · Zbl 0759.22001
[15] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Grad. Stud. Math., vol. 34 (2001), American Mathematical Society: American Mathematical Society Providence, RI, corrected reprint of the 1978 original · Zbl 0993.53002
[16] Howe, R., A notion of rank for unitary representations of the classical groups, (Harmonic Analysis and Group Representations (1982), Liguori: Liguori Naples), 223-331
[17] Howe, R. E.; Tan, E. C., Non-Abelian Harmonic Analysis (1992), Springer-Verlag · Zbl 0768.43001
[18] Humphreys, James E., Linear Algebraic Groups (1998), Springer-Verlag · Zbl 0325.20039
[19] Katok, A.; Spatzier, R., First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Publ. Math. Inst. Hautes Études Sci., 79, 131-156 (1994) · Zbl 0819.58027
[20] Katok, A.; Spatzier, R., Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Proc. Steklov Inst. Math., 216, 287-314 (1997) · Zbl 0938.37010
[21] Knapp, A. W., Representation Theory of Semisimple Groups—An Overview Based on Examples (1986), Princeton University Press · Zbl 0604.22001
[22] Kostant, B., On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc., 75, 627-642 (1969) · Zbl 0229.22026
[23] Lang, S., \(S L(2, R) (1975)\), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0311.22001
[24] Li, J.-S., The minimal decay of matrix coefficients for classical groups, (Harmonic Analysis in China. Harmonic Analysis in China, Math. Appl., vol. 327 (1996)), 146-169 · Zbl 0844.22021
[25] Mackey, G. W., Induced Representations of Groups and Quantum Mechanics (1968), W.A. Benjamin, Inc. · Zbl 0174.28101
[26] Margulis, G. A., Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems, 2, 383-396 (1982) · Zbl 0532.28012
[27] Margulis, G. A., Discrete Subgroups of Semisimple Lie Groups (1991), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0732.22008
[28] Oh, Hee, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113, 1, 133-192 (2002) · Zbl 1011.22007
[29] Osborne, M. Scott, On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups, J. Funct. Anal., 19, 40-49 (1975) · Zbl 0295.43008
[30] Serre, J., Lie Algebras and Lie Groups, Lecture Notes in Math. (1964), Springer-Verlag · Zbl 0742.17008
[31] Silberger, Allan J., Introduction to Harmonic Analysis on Reductive \(p\)-Adic Groups (1979), Princeton University Press · Zbl 0458.22006
[32] Valette, A., Old and new about Kazhdan’s property (T), (Baldoni, V.; Picardello, M., Representations of Lie Groups and Quantum Groups. Representations of Lie Groups and Quantum Groups, Pitman Res. Notes Math. Ser. (1994)), 271-333 · Zbl 0840.22008
[33] Wang, S. P., On density properties of S-subgroups of locally compact groups, Ann. of Math., 94, 2, 325-329 (1971) · Zbl 0265.22010
[35] Warner, G., Harmonic Analysis on Semisimple Lie Groups I, II (1972), Springer-Verlag: Springer-Verlag Berlin · Zbl 0265.22021
[36] Weil, A., Basic Number Theory (1973), Springer-Verlag · Zbl 0267.12001
[37] Zimmer, R. J., Ergodic Theory and Semisimple Groups (1984), Birkhäuser: Birkhäuser Boston · Zbl 0571.58015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.