×

Temperature variation of a NiTi wire considering the effects of test machine grips. (English) Zbl 1329.74078

Summary: Recent experiments showed that the specimen temperature variations caused by latent heat release/absorption place an important role on the mechanical responses of NiTi SMAs like the propagation stress and the damping capacity due to the dependence of phase transformation stress on temperature. This paper studies the temperature variation of a NiTi wire considering the effects of the test machine grips. In addition to the heat convection with the ambient condition, the existence of strong heat exchange between the specimen ends and the test machine grips highly affects the temperature evolution. To investigate this effect on temperature variation, a simplified model is proposed and the closed-form solution of the axial temperature variation is obtained. The validity of the model is verified by two common cases. In the case of sufficiently long specimen, it reduces to the Dirichlet boundary condition. In the case of relatively short specimen, the temperature variation obtained in this model is similar to that under the Neumann boundary condition usually used in the previous work. The results presented in this paper that have clear physical interpretations can give useful advice in the design and simulation of SMA devices in practice.

MSC:

74F05 Thermal effects in solid mechanics
74K05 Strings
Full Text: DOI

References:

[1] Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge, UK (1999)
[2] Saadat S., Salichs J., Noori M., Hou Z., Davoodi H., Bar-On I., Suzuki Y., Masuda A.: An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Mater. Struct. 11, 218-229 (2002) · doi:10.1088/0964-1726/11/2/305
[3] Auricchio F., Fugazza D., Desroches R.: Rate-dependent thermo-mechanical modelling of superelastic shape-memory alloys for seismic applications. J. Intell. Mater. Syst. Struct. 19, 47-61 (2008) · doi:10.1177/1045389X06073426
[4] Bruno O.P., Leo H.P., Reitich F.: Free boundary conditions at austenite-martensite interfaces. Phys. Rev. Lett. 74, 746-749 (1995) · doi:10.1103/PhysRevLett.74.746
[5] Shaw J.A., Kyriakides S.: Thermo-mechanical aspects of NiTi. J. Mech. Phys. Solids 43, 1243-1281 (1995) · doi:10.1016/0022-5096(95)00024-D
[6] Shaw J.A., Kyriakides S.: On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Meter. 45, 683-700 (1997) · doi:10.1016/S1359-6454(96)00189-9
[7] Churchill C.B., Shaw J.A., Iadicola M.A.: Tips and tricks for characterizing shape memory alloy wire: part 3-localization and propagation phenomena. Exp. Tech. 33(5), 70-78 (2009) · doi:10.1111/j.1747-1567.2009.00558.x
[8] He Y.J., Yin Y., Zhou R.H., Sun Q.P.: Ambient effect on damping peak of NiTi shape memory alloy. Mater. Lett. 64, 1483-1486 (2010) · doi:10.1016/j.matlet.2010.03.068
[9] Zhang X.H., Feng P., He Y.J., Yu T.X., Sun Q.P.: Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. Int. J. Mech. Sci. 52, 1660-1670 (2010) · doi:10.1016/j.ijmecsci.2010.08.007
[10] Morin C., Moumni Z., Zaki W.: A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J. Plast. 27, 748-767 (2011) · Zbl 1426.74082 · doi:10.1016/j.ijplas.2010.09.005
[11] Yin H., Sun Q.P.: Temperature variation in NiTi shape memory alloy during cyclic phase transition. J. Mater. Engi. Perform. 21, 2505-2508 (2012) · doi:10.1007/s11665-012-0395-9
[12] Yang S.Y., Dui G.S.: Temperature analysis of one-dimensional NiTi shape memory alloys under different loading rates and boundary conditions. Int. J. Solids Struct. 50, 3254-3265 (2013) · doi:10.1016/j.ijsolstr.2013.05.026
[13] Yin H., He Y.J., Sun Q.P.: Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J. Mech. Phys. Solids 67, 100-128 (2014) · doi:10.1016/j.jmps.2014.01.013
[14] Iadicola M.A., Shaw J.A.: Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy. Int. J. Plast. 20, 577-605 (2004) · Zbl 1134.74345 · doi:10.1016/S0749-6419(03)00040-8
[15] He Y.J., Sun Q.P.: On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. Int. J. Solids Struct. 48, 1688-1695 (2011) · Zbl 1236.74202 · doi:10.1016/j.ijsolstr.2011.02.017
[16] Vitiello, A., Giorleo, G., Morace, R.E.: Analysis of thermomechanical behaviour of nitinol wires with high strain rates. Smart Mater. Struct. 14, 215-21 (2005)
[17] Yang S.Y., Dui G.S., Liu B.F.: Modeling of rate-dependent damping capacity of one-dimensional superelastic shape memory alloys. J. Intell. Mater. Syst. Struct. 24(4), 431-440 (2013) · doi:10.1177/1045389X12462651
[18] Bhattacharyya A., Sweeney L., Faulkner M.G.: Experimental characterization of free convection during thermal phase transformations in shape memory alloy wires. Smart Mater. Struct. 11, 411-422 (2002) · doi:10.1088/0964-1726/11/3/312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.