×

Stabilized plane and axisymmetric Lobatto finite element models. (English) Zbl 1329.65285

Summary: High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468-488 · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[2] Maday Y, Meiron D, Patera AT, Rønquist EM (1993) Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations. SIAM J Sci Comput 14:310-337 · Zbl 0769.76047 · doi:10.1137/0914020
[3] Komatitsch D, Vilotte JP (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88:368-392
[4] Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sanchez-Sesma FJ (1999) The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems. Int J Numer Methods Eng 45:1139-1164 · Zbl 0947.74074 · doi:10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
[5] Dauksher W, Emery AF (2000) The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput Methods Appl Mech Eng 188:217-233 · Zbl 0963.74059 · doi:10.1016/S0045-7825(99)00149-8
[6] Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin · Zbl 1093.76002
[7] De Basabe JD, Sen MK (2007) Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72:T81-T95 · doi:10.1190/1.2785046
[8] Kudela P, Żak A, Krawczuk M, Ostachowicz W (2007) Modelling of wave propagation in composite plates using the time domain spectral element method. J Sound Vib 302:728-745 · Zbl 1242.74044 · doi:10.1016/j.jsv.2006.12.016
[9] Seriani G, Oliveira SP (2008) Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 45:729-744 · Zbl 1231.74185 · doi:10.1016/j.wavemoti.2007.11.007
[10] Witkowski W, Rucka M, Chróścielewski J, Wilde K (2012) On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem Anal Des 55:31-41 · doi:10.1016/j.finel.2012.02.001
[11] Xing Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int J Numer Methods Eng 80:1718-1742 · Zbl 1183.74328 · doi:10.1002/nme.2685
[12] Zhong H, Yu T (2009) A weak form quadrature element method for plane elasticity problems. Appl Math Model 33:3801-3814 · Zbl 1205.74172 · doi:10.1016/j.apm.2008.12.007
[13] Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2:1333-1336 · doi:10.2514/3.2546
[14] Lee SW, Rhiu JJ (1986) A new efficient approach to the formulation of mixed finite element models for structural analysis. Int J Numer Methods Eng 23:1629-1641 · Zbl 0596.73046 · doi:10.1002/nme.1620230905
[15] Rhiu JJ, Lee SW, Russell RM (1990) Two higher-order shell finite elements with stabilization matrix. AIAA J 28:1517-1524 · doi:10.2514/3.25247
[16] Sze KY (1993) A novel approach for devising higher-order hybrid elements. Int J Numer Methods Eng 36:3303-3316 · Zbl 0789.73075 · doi:10.1002/nme.1620361907
[17] Sze KY (1994) Stabilization schemes for 12-node to 21-node brick elements based on orthogonal and consistently assumed stress modes. Comput Methods Appl Mech Eng 119:325-340 · Zbl 0853.73069 · doi:10.1016/0045-7825(94)90093-0
[18] Sze KY, Yi S, Tay MH (1997) An explicit hybrid stabilized eighteen-node solid element for thin shell analysis. Int J Numer Methods Eng 40:1839-1856 · doi:10.1002/(SICI)1097-0207(19970530)40:10<1839::AID-NME141>3.0.CO;2-O
[19] Sze KY, Wu D (2011) Transition finite element families for adaptive analysis of axisymmetric elasticity problems. Finite Elem Anal Des 47:360-372 · doi:10.1016/j.finel.2010.11.002
[20] Jog CS, Annabattula R (2006) The development of hybrid axisymmetric elements based on the Hellinger-Reissner variational principle. Int J Numer Methods Eng 65:2279-2291 · Zbl 1113.74070 · doi:10.1002/nme.1552
[21] Malkus DS, Hughes TJR (1978) Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15:63-81 · Zbl 0381.73075 · doi:10.1016/0045-7825(78)90005-1
[22] Brito KD, Sprague MA (2012) Reissner-Mindlin Legendre spectral finite elements with mixed reduced quadrature. Finite Elem Anal Des 58:74-83 · doi:10.1016/j.finel.2012.04.009
[23] Belytschko T, Ong JSJ, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251-276 · Zbl 0522.73063 · doi:10.1016/0045-7825(84)90067-7
[24] Belytschko T, Bachrach WE (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54:279-301 · Zbl 0579.73075 · doi:10.1016/0045-7825(86)90107-6
[25] Sze KY, Fan H, Chow CL (1995) Elimination of spurious pressure and kinematic modes in biquadratic nine-node plane element. Int J Numer Methods Eng 38:3911-3932 · Zbl 0846.73070 · doi:10.1002/nme.1620382302
[26] Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 48:79-109 · Zbl 0983.74070 · doi:10.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
[27] Gruttmann F, Wagner W (2004) A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element. Int J Numer Methods Eng 61:2273-2295 · Zbl 1075.74646 · doi:10.1002/nme.1148
[28] Sze KY, Zheng SJ, Lo SH (2004) A stabilized eighteen-node solid element for hyperelastic analysis of shells. Finite Elem Anal Des 40:319-340 · doi:10.1016/S0168-874X(03)00050-7
[29] Liu GH, Sze KY (2010) Axisymmetric quadrilateral elements for large deformation hyperelastic analysis. Int J Mech Mater Des 6:197-207 · doi:10.1007/s10999-010-9129-z
[30] Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595-1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[31] Korelc J, Wriggers P (1996) Consistent gradient formulation for a stable enhanced strain method for large deformations. Eng Comput 13:103-123 · doi:10.1108/02644409610111001
[32] Glaser S, Armero F (1997) On the formulation of enhanced strain finite elements in finite deformations. Eng Comput 14:759-791 · Zbl 1071.74699 · doi:10.1108/02644409710188664
[33] Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: part I: geometrically linear problems. Comput Struct 75:237-250 · doi:10.1016/S0045-7949(99)00134-0
[34] Romero I, Bischoff M (2007) Incompatible bubbles: a non-conforming finite element formulation for linear elasticity. Comput Methods Appl Mech Eng 196:1662-1672 · Zbl 1173.74440 · doi:10.1016/j.cma.2006.09.010
[35] Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49:1-27 · doi:10.1115/1.3101882
[36] Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York · Zbl 1191.74002
[37] Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York · Zbl 0792.73003
[38] Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New York · Zbl 0266.73008
[39] Sani RL, Gresho PM, Lee RL, Griffiths DF (1981) The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations: part 1. Int J Numer Methods Fluids 1:17-43 · Zbl 0461.76021 · doi:10.1002/fld.1650010104
[40] Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178-193 · doi:10.1016/j.compstruc.2013.06.007
[41] Achenbach JD (1973) Wave propagation in elastic solids. North-Holland, Amsterdam · Zbl 0268.73005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.