×

High-order algorithms for Laplace-Beltrami operators and geometric invariants over curved surfaces. (English) Zbl 1329.65263

Summary: The Laplace-Beltrami operators on curved surfaces play an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve this operator. In this note we shall combine the local tangential lifting method with the configuration equation to develop a new effective and convergent generalized finite difference method to approximate the Laplace-Beltrami operators acting on functions over discrete surfaces. The convergence rates of our algorithms of discrete Laplace-Beltrami operators over surfaces is \(O(r^n)\), \(n\geq 1\), where \(r\) represents the size of the mesh of discretization of the surface. The problem of high-order accuracies will also be discussed and used to compute geometric invariants of the underlying surfaces. Some convergence tests and eigenvalue computations on the sphere, tori and a dumbbell are presented.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
58J05 Elliptic equations on manifolds, general theory
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Augoula, S., Abgrall, R.: High order numerical discretization for Hamilton-Jacobi equations on triangular meshes. J. Sci. Comput. 15(2), 197-229 (2000) · Zbl 1077.65506 · doi:10.1023/A:1007633810484
[2] Chen, S.-G., Wu, J.-Y.: Estimating normal vectors and curvatures by centroid weights. Comput. Aided Geom. Des. 21, 447-458 (2004) · Zbl 1069.53502 · doi:10.1016/j.cagd.2004.02.003
[3] Chen, S.-G., Chi, M.-H., Wu, J.-Y.: Curvature estimation and curvature flow for digital curves. WSEAS Trans. Comput. 5, 804-809 (2006)
[4] Chen, S.-G., Chi, M.-H., Wu, J.-Y.: Boundary and interior derivatives estimation for 2D scattered data points. WSEAS Trans. Comput. 5, 824-829 (2006)
[5] Chen, S.-G., Wu, J.-Y.: Discrete conservation laws on curved surfaces. SIAM J. Sci. Comput. 35(2), A719-A739 (2013) · Zbl 1266.65158 · doi:10.1137/110846257
[6] Chun, S., Hesthaven, J.S.: High-order accurate thin layer approximations for time-domain electromagnetics. Part I: general metal backed coatings. J. Comput. Appl. Math. 231, 598-611 (2009) · Zbl 1180.78009 · doi:10.1016/j.cam.2009.04.019
[7] Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Proceedings of Viz 2000, IEEE Visualization, pp. 397-405 (2000) · Zbl 1091.65006
[8] Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH99, pp. 317-324 (1999)
[9] do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall International Inc, London (1976) · Zbl 0326.53001
[10] do Carmo, M.: Riemannian Geometry. Birkhauser, Boston (1992) · Zbl 0752.53001 · doi:10.1007/978-1-4757-2201-7
[11] Goudenege, L., Martin, D., Vial, G.: High order finite element calculations for the Cahn-Hilliard equation. J. Sci. Comput. 52, 294-321 (2012) · Zbl 1257.82004 · doi:10.1007/s10915-011-9546-7
[12] Hesthaven, J.S., Warburton, T.: High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. R. Soc. Lond. Ser. A 362, 493-524 (2004) · Zbl 1078.78014 · doi:10.1098/rsta.2003.1332
[13] Macdonald, C.B., Brandman, J., Steven J. Ruuth.: Solving eigenvalue problems on curved surfaces using the Closest Point Method. J. Comput. Phys. 230, 7944-7956 (2011) · Zbl 1231.65205
[14] Ray, N., Wang, D., Jiao, X., Glimm, J.: High-order numerical integration over discrete surfaces. SIAM J. Numer. Anal. 50(6), 3061-3083 (2012) · Zbl 1261.65028 · doi:10.1137/110857404
[15] Romeny, B.H.: Geometry Driven Diffusion in Computer Vision. Springer, Boston (1994) · Zbl 0832.68111
[16] Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227, 1943-1961 (2008) · Zbl 1134.65058 · doi:10.1016/j.jcp.2007.10.009
[17] Kluwer Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001) · Zbl 0968.35001 · doi:10.1017/CBO9780511626319
[18] Shakeri, F., Dehghan, M.: A high order finite volume element method for solving elliptic partial integro-differential equations. Appl. Numer. Math. 65, 105-118 (2013) · Zbl 1263.65137 · doi:10.1016/j.apnum.2012.10.002
[19] Shi, Y., Lai, R., Krishna, S., Sicotte, N., Dinov, I., Toga, A.W.: Anisotropic Laplace-Beltrami eigenmaps: bridging reeb graphs and skeletons. In: Proceedings MMBIA (2008) · Zbl 1091.65006
[20] Shi, Y., Lai, R., Kern, K., Sicotte, N., Dinov, I., Toga, A.W.: Harmonic surface mapping with Laplace-Beltrami eigenmaps. In: Proceedings MICCAI (2008) · Zbl 1077.65506
[21] Strange, G., Fix, G.: An Analysis of the Finite Element Method, 2nd edn. Wellesley-Cambridge press, Wellesley (2008) · Zbl 1171.65081
[22] Trasdahl, Ø., Rønquist, E.M.: High order numerical approximation of minimal surfaces. J. Comput. Phys. 230, 4795-4810 (2011) · Zbl 1220.65079
[23] Wu, J.-Y., Chi, M.-H., Chen, S.-G.: A new intrinsic numerical method for PDE on surfaces. Int. J. Comput. Math. 89(1), 54-79 (2012) · Zbl 1242.65214 · doi:10.1080/00207160.2011.627435
[24] Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118-1139 (2005) · Zbl 1091.65006 · doi:10.1137/040615201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.