×

Bounded cohomology and the Cheeger isoperimetric constant. (English) Zbl 1329.53061

Summary: We study equivalent conditions for the Cheeger isoperimetric constant of Riemannian manifolds to be positive. We first give a proof of Gromov’s assertion for locally symmetric spaces with infinite volume, which states that the existence of a bounded primitive of the Riemannian volume form is equivalent to the positivity of the Cheeger isoperimetric constant. Furthermore, under the assumption of pinched negative sectional curvature, we obtain another equivalent condition in terms of bounded cohomology classes. This generalizes T. Soma’s result [Duke Math. J. 88, No. 2, 357–370 (1997; Zbl 0880.57009)] for hyperbolic 3-manifolds to \(\mathbb R\)-rank one locally symmetric spaces.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C35 Differential geometry of symmetric spaces
20F67 Hyperbolic groups and nonpositively curved groups

Citations:

Zbl 0880.57009

References:

[1] Agol, I.: Tameness of hyperbolic 3-manifolds. arXiv:math/0405568[math.GT] · Zbl 1178.57017
[2] Barge, J., Ghys, E.: Surfaces et cohomologie bornée. Invent. Math. 92(3), 509-526 (1988) · Zbl 0641.55015 · doi:10.1007/BF01393745
[3] Block, J., Weinberger, S.: Aperiodic tilings, positive scalar curvature, and amenability of spaces. J. Am. Math. Soc. 5(4), 907-918 (1992) · Zbl 0780.53031 · doi:10.1090/S0894-0347-1992-1145337-X
[4] Bonahon, F.: Bouts des variétés hyperboliques de dimension 3. Ann. Math. (2) 124(1), 71-158 (1986) · Zbl 0671.57008 · doi:10.2307/1971388
[5] Bowditch, B.H.: Geometrical finiteness with variable negative curvature. Duke Math. J. 77(1), 229-274 (1995) · Zbl 0877.57018 · doi:10.1215/S0012-7094-95-07709-6
[6] Brooks, R., Series, C.: Bounded cohomology for surface groups. Topology 23(1), 29-36 (1984) · Zbl 0523.55011 · doi:10.1016/0040-9383(84)90022-3
[7] Burger, M., Iozzi, A.: Bounded differential forms, generalized Milnor-Wood inequality and an application to deformation rigidity. Geom. Dedicata 125, 1-23 (2007) · Zbl 1134.53020 · doi:10.1007/s10711-006-9108-6
[8] Burger, M., Iozzi, A., Wienhard, A.: Hermitian symmetric spaces and Kähler rigidity. Transform. Groups 12(1), 5-32 (2007) · Zbl 1138.32012 · doi:10.1007/s00031-005-1135-0
[9] Buser, P.: Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106. Birkhäuser, Boston (1992) · Zbl 0770.53001
[10] Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213-230 (1982) · Zbl 0501.53030
[11] Calegari, D., Gabai, D.: Shrinkwrapping and the taming of hyperbolic \[33\]-manifolds. J. Am. Math. Soc. 19(2), 385-446 (2006) · Zbl 1090.57010 · doi:10.1090/S0894-0347-05-00513-8
[12] Calegari, D.: Faces of the scl norm ball. Geom. Topol. 13(3), 1313-1336 (2009) · Zbl 1228.20032 · doi:10.2140/gt.2009.13.1313
[13] Calegari, D.: scl, MSJ Memoirs, 20. Mathematical Society of Japan, Tokyo (2009) · Zbl 1187.20035
[14] Canary, R.D., Minsky, Y.N.: On limits of tame hyperbolic 3-manifolds. J. Differ. Geom. 43(1), 1-41 (1996) · Zbl 0856.57011
[15] Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Cochner 1969), pp. 195-199. Princeton University Press, Princeton (1970) · Zbl 0212.44903
[16] Croke, C.B.: Area of small disks. Bull. Lond. Math. Soc. 41(4), 701-708 (2009) · Zbl 1177.53041 · doi:10.1112/blms/bdp044
[17] Eichhorn, J.: Global analysis on open manifolds. Nova Science Publisher Inc., New York (2007) · Zbl 1188.58001
[18] Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. (2) 72, 458-520 (1960) · Zbl 0187.31301 · doi:10.2307/1970227
[19] Fejes Tóth, L.: Kreisausfüllungen der hyperbolischen Ebene. Acta Math. Acad. Sci. Hungar 4, 103-110 (1953) · Zbl 0051.11305 · doi:10.1007/BF02020354
[20] Freedman, M., Hass, J., Scott, P.: Least area incompressible surfaces in 3-manifolds. Invent. Math. 71(3), 609-642 (1983) · Zbl 0482.53045 · doi:10.1007/BF02095997
[21] Ghys, É.: Groupes d’homéomorphismes du cercle et cohomologie bornée. The Lefschetz centennial conference. Part III (Mexico City, 1984), pp. 81-106. American Mathematical Society, Providence (1987) · Zbl 0469.53038
[22] Gaffney, M.: A special Stokes’ Theorem for complete Riemannian manifolds. Ann. Math. 60, 140-145 (1954) · Zbl 0055.40301 · doi:10.2307/1969703
[23] Guichardet, A.: Cohomologie des groupes topologiques et des algèbres de Lie, Textes Mathématiques, vol. 2. CEDIC, Paris (1980) · Zbl 0464.22001
[24] Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory, Vol. 2 (Sussex, 1991), pp. 1-295. London Math. Soc. Lecture note Ser., 182, Cambridge Univ. Press, Cambridge (1993) · Zbl 0841.20039
[25] Hamenstädt, U.: Small eigenvalues of geometrically finite manifolds. J. Geom. Anal. 14(2), 281-290 (2004) · Zbl 1078.53023 · doi:10.1007/BF02922073
[26] Hou, Y.: Critical exponent of negatively curved three manifolds. Glasg. Math. J. 45(2), 373-387 (2003) · Zbl 1045.57006 · doi:10.1017/S0017089503001332
[27] Inoue, I., Yano, K.: The Gromov invariant of negatively curved manifolds. Topology 21(1), 83-89 (1981) · Zbl 0469.53038 · doi:10.1016/0040-9383(82)90043-X
[28] Karp, L.: On Stokes’ theorem for noncompact manifolds. Proc. Am. Math. Soc. 82, 487-490 (1981) · Zbl 0471.31004
[29] Leuzinger, E.: Kazhdan’s property (T), \[L^2\] L2-spectrum and isoperimetric inequalities for locally symmetric spaces. Comment. Math. Helv. 78(1), 116-133 (2003) · Zbl 1027.22015 · doi:10.1007/s000140300005
[30] Maz’ya, V.G.: Sobolev Spaces, Springer Seires in Soviet Mathematics. Springer, Berlin (1985)
[31] Mitsumatsu, Y.: Bounded cohomology and \[\ell^1\] ℓ1-homology of surfaces. Topology 23(4), 465-471 (1984) · Zbl 0568.55002 · doi:10.1016/0040-9383(84)90006-5
[32] Moise, E.E.: Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. Math. (2) 56, 96-114 (1952) · Zbl 0048.17102 · doi:10.2307/1969769
[33] Monod, N.: Continuous Bounded Cohomology of Locally Compact Groups, Lecture Notes in Mathematics, vol. 1758. Springer, Berlin (2001) · Zbl 0967.22006 · doi:10.1007/b80626
[34] Radó, T.: Über den Begriff der Riemannschen Fläche. Acta Litt. Sci. Szeged 2, 101-121 (1925) · JFM 51.0273.01
[35] Sikorav, J.-C.: Growth of a primitive of a differential form. Bull. Soc. Math. Fr. 129(2), 159-168 (2001) · Zbl 0990.58001
[36] Soma, T.: Bounded cohomology and topologically tame Kleinian groups. Duke Math. J. 88(2), 357-370 (1997) · Zbl 0880.57009 · doi:10.1215/S0012-7094-97-08814-1
[37] Sullivan, D.: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math. 36, 225-255 (1976) · Zbl 0335.57015 · doi:10.1007/BF01390011
[38] Thurston, W.: Geometry and topology of 3-manifolds, Lecture Notes, Princeton. http://library.msri.org/books/gt3m (1978) · Zbl 0780.53031
[39] Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math. (2) 87, 56-88 (1968) · Zbl 0157.30603 · doi:10.2307/1970594
[40] Wienhard, A.: Remarks on and around bounded differential forms. Pure Appl. Math. Q. 8(2), 476-496 (2012) · Zbl 1253.58002 · doi:10.4310/PAMQ.2012.v8.n2.a5
[41] Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201-228 (1975) · Zbl 0291.31002 · doi:10.1002/cpa.3160280203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.