×

Concentrating solutions for an exponential nonlinearity with Robin boundary condition. (English) Zbl 1329.35133

Summary: We study the following Robin boundary value problem \[ \begin{cases} \Delta u+\epsilon^2u^{p-1}e^{u^p}=0\quad u>0,\quad & \text{in }\Omega\\ \frac{\partial u}{\partial n}+\lambda u=0\quad & \text{on }\partial\Omega,\end{cases}\tag{0.1} \] where \(\Omega\) is a bounded domain in \(\mathbb{R}^2\) with smooth boundary, as \(\epsilon \to 0\) and simultaneously \(\lambda \to + \infty\), \(0 < p < 2\). By using a Lyapunov-Schmidt reduction procedure, we extend for the whole range of exponents \(0 < p < 2\), the results of J. Dávila and E. Topp [J. Differ. Equations 252, No. 3, 2648–2697 (2012; Zbl 1236.35046)], who constructed bubbling solutions to problem for \(p = 1\).

MSC:

35J25 Boundary value problems for second-order elliptic equations

Citations:

Zbl 1236.35046
Full Text: DOI

References:

[1] Baraket, S.; Pacard, F., Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations, 6, 1, 1-38 (1998) · Zbl 0890.35047
[2] Berestycki, H.; Wei, J., On singular perturbation problems with Robin boundary condition, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2, 1, 199-230 (2003) · Zbl 1121.35008
[3] Brezis, H.; Merle, F., Uniform estimates and blow-up behavior for solutions of \(- \Delta u = V(x) e^u\) in two dimensions, Comm. Partial Differential Equations, 16, 8-9, 1223-1253 (1991) · Zbl 0746.35006
[4] Chae, D.; Imanuvilov, O., The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215, 119-142 (2000) · Zbl 1002.58015
[5] Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63, 615-623 (1991) · Zbl 0768.35025
[6] Chen, C. C.; Lin, C. S., Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56, 1667-1727 (2003) · Zbl 1032.58010
[7] Dávila, J.; Kowalczyk, M.; Montenegro, M., Critical points of the regular part of the harmonic Green function with Robin boundary condition, J. Funct. Anal., 255, 5, 1057-1101 (2008) · Zbl 1159.35020
[8] Dávila, J.; Topp, E., Concentrating solutions of the Liouville equation with Robin boundary condition, J. Differential Equations, 252, 2648-2697 (2012) · Zbl 1236.35046
[9] Del Pino, M.; Kowalczyk, M.; Musso, M., Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations, 24, 47-81 (2005) · Zbl 1088.35067
[10] Del Pino, M.; Musso, M.; Ruf, B., New solutions for Trudinger-Moser critical equations in \(R^2\), J. Funct. Anal., 258, 421-457 (2010) · Zbl 1191.35138
[11] Deng, S. B., Mixed interior and boundary bubbling solutions for Neumann problem in \(R^2\), J. Differential Equations, 253, 727-763 (2012) · Zbl 1252.35031
[12] Deng, S. B.; Musso, M., Bubbling solutions for an exponential nonlinearity in \(R^2\), J. Differential Equations, 257, 2259-2302 (2014) · Zbl 1301.35038
[13] Deng, S. B.; Musso, M., Bubbling solutions for elliptic equation with exponential Neumann data in \(R^2\), Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XIII, 699-744 (2014) · Zbl 1319.35027
[14] Dillon, R.; Maini, P. K.; Othmer, H. G., Pattern formation in generalized Turing systems, I. Steady-state patterns in system with mixed boundary condition, J. Math. Biol., 32, 4, 345-393 (1994) · Zbl 0829.92001
[15] Esposito, P.; Figueroa, P., Singular mean field equations on compact Riemann surfaces, Nonlinear Anal., 111, 33-65 (2014) · Zbl 1302.58009
[16] Esposito, P.; Grossi, M.; Pistoia, A., On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22, 2, 227-257 (2005) · Zbl 1129.35376
[17] Esposito, P.; Musso, M.; Pistoia, A., Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differential Equations, 227, 29-68 (2006) · Zbl 1254.35083
[18] Esposito, P.; Musso, M.; Pistoia, A., On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity, Proc. Lond. Math. Soc. (3), 94, 2, 497-519 (2007) · Zbl 1387.35219
[19] Esposito, P.; Pistoia, A.; Wei, J., Concentrating solutions for the Henon equation in \(R^2\), J. Anal. Math., 100, 249-280 (2006) · Zbl 1173.35504
[20] Figueroa, P., Singular limits for Liouville-type equations on the flat two-torus, Calc. Var. Partial Differential Equations, 49, 1-2, 613-647 (2014) · Zbl 1287.35040
[21] Floer, A.; Weinstein, A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69, 3, 397-408 (1986) · Zbl 0613.35076
[22] Gelfand, I. M., Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl., 29, 2, 295-381 (1963) · Zbl 0127.04901
[23] Li, Y. Y.; Shafrir, I., Blow-up analysis for solutions of \(- \Delta u = V e^u\) in dimension two, Indiana Univ. Math. J., 43, 4, 1255-1270 (1994) · Zbl 0842.35011
[24] Liouville, J., Sur L’Equation aux Difference Partielles \(\frac{d^2 \log \lambda}{d u d v} \pm \frac{\lambda}{2 a^2} = 0\), C. R. Acad. Sci. Paris, 36, 71-72 (1853)
[25] Ma, L.; Wei, J. C., Convergence for a Liouville equation, Commun. Math. Helv., 76, 506-514 (2001) · Zbl 0987.35056
[26] Nagasaki, K.; Suzuki, T., Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptot. Anal., 3, 173-188 (1990) · Zbl 0726.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.