×

On some anabelian properties of arithmetic curves. (English) Zbl 1329.11120

The main object of the paper under review is the fundamental group \(G_S=\pi_1(\operatorname{Spec} O_{K,S})\) where \(K\) is a number field and \(S\supseteq S_{\infty}\) is a finite set of primes of \(K\). The author is interested in reconstructing the position of the decomposition groups \(D_{\mathfrak p}\), \(\mathfrak p\in S\setminus S_{\infty}\), inside \(G_S\). In contrast to a classical theorem by J. Neukirch [Invent. Math. 6, 296–314 (1969; Zbl 0192.40102)] for \(G_K=\operatorname{Gal}(K)\), saying that this group fully encodes such information for the decomposition groups of primes of \(K\), the author shows that some arithmetical information is to be added. He exhibits several equivalent ways for adding such data: the cyclotomic character on \(G_S\); the \(S\)-class number of all finite subfields \(K_S/L/K\); the number of primes of \(L\) lying over \(S\) for all these \(L\).

MSC:

11R34 Galois cohomology
11R37 Class field theory
14G32 Universal profinite groups (relationship to moduli spaces, projective and moduli towers, Galois theory)

Citations:

Zbl 0192.40102

References:

[1] Andozhskii I.V.: Demushkin groups. Mat. Zametki 14(1), 121-126 (1973) · Zbl 0275.20067
[2] Chenevier G., Clozel L.: Corps de nombres peu ramifiés et formes automorphes autoduales. J. AMS 22(2), 467-519 (2009) · Zbl 1206.11066
[3] Demushkin S.P.: The group of the maximal p-extension of a local field. Izv. Akad. Nauk SSSR, Ser. Matem. 25, 326-346 (1961) · Zbl 0100.03302
[4] Ivanov, A.: Arithmetic and Anabelian Theorems for Stable Sets in Number Fields. Dissertation, Universität Heidelberg (2013) · Zbl 1288.11099
[5] Koch H.: Galois Theory of p-Extensions. 1st edn. Springer, Berlin (2002) · Zbl 1023.11002 · doi:10.1007/978-3-662-04967-9
[6] Neukirch J.: Kennzeichnung der p-adischen und der endlich algebraischen Zahlkörper. Invent. Math. 6, 296-314 (1969) · Zbl 0192.40102 · doi:10.1007/BF01425420
[7] Neukirch, J.: Klassenkörpertheorie, Mannheim (1969) · Zbl 0199.37502
[8] Neukirch J., Schmidt A., Wingberg K.: Cohomology of Number Fields. 2nd edn. Springer, Berlin (2008) · Zbl 1136.11001 · doi:10.1007/978-3-540-37889-1
[9] Soulé C.: K-theorie des anneaux d’entiers de corps de nombres et cohomologie étale.. Invent. Math. 55, 251-295 (1979) · Zbl 0437.12008 · doi:10.1007/BF01406843
[10] Tamagawa A.: The Grothendieck conjecture for affine curves. Compos. Math. 109, 135-194 (1997) · Zbl 0899.14007 · doi:10.1023/A:1000114400142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.