×

Geometric description of the thermodynamics of the noncommutative Schwarzschild black hole. (English) Zbl 1328.83099

Summary: The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD). Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.

MSC:

83C57 Black holes
83C65 Methods of noncommutative geometry in general relativity
83E05 Geometrodynamics and the holographic principle
80A10 Classical and relativistic thermodynamics
53Z05 Applications of differential geometry to physics

References:

[1] DOI: 10.1007/BF02345020 · Zbl 1378.83040 · doi:10.1007/BF02345020
[2] Communications in Mathematical Physics 87 (4) pp 577– (1983) · doi:10.1007/BF01208266
[3] DOI: 10.1103/PhysRevD.54.2647 · doi:10.1103/PhysRevD.54.2647
[4] DOI: 10.1103/PhysRevD.60.104026 · doi:10.1103/PhysRevD.60.104026
[5] Journal of the Korean Physical Society 33 pp S477– (1998)
[6] DOI: 10.1103/PhysRevD.60.067502 · doi:10.1103/PhysRevD.60.067502
[7] DOI: 10.1088/0305-4470/36/33/101 · Zbl 1042.81044 · doi:10.1088/0305-4470/36/33/101
[8] DOI: 10.1088/1126-6708/2006/09/021 · doi:10.1088/1126-6708/2006/09/021
[9] DOI: 10.1016/j.physletb.2005.11.004 · Zbl 1247.83113 · doi:10.1016/j.physletb.2005.11.004
[10] DOI: 10.1016/j.physletb.2008.11.030 · doi:10.1016/j.physletb.2008.11.030
[11] DOI: 10.1142/S0217751X09043353 · Zbl 1170.83417 · doi:10.1142/S0217751X09043353
[12] DOI: 10.1088/1126-6708/2007/02/012 · doi:10.1088/1126-6708/2007/02/012
[13] DOI: 10.1103/PhysRevD.77.124035 · doi:10.1103/PhysRevD.77.124035
[14] DOI: 10.1088/0264-9381/26/8/085010 · Zbl 1163.83345 · doi:10.1088/0264-9381/26/8/085010
[15] DOI: 10.1088/0264-9381/25/17/175015 · Zbl 1149.83324 · doi:10.1088/0264-9381/25/17/175015
[16] DOI: 10.1103/PhysRevA.20.1608 · doi:10.1103/PhysRevA.20.1608
[17] Physical Review D 75 (2007)
[18] Journal of Chemical Physics 63 pp 2479– (1975) · doi:10.1063/1.431689
[19] DOI: 10.1063/1.431635 · doi:10.1063/1.431635
[20] DOI: 10.1063/1.2409524 · Zbl 1121.80011 · doi:10.1063/1.2409524
[21] DOI: 10.1016/j.physletb.2007.09.056 · Zbl 1246.83137 · doi:10.1016/j.physletb.2007.09.056
[22] DOI: 10.1088/1126-6708/2008/04/042 · Zbl 1246.83123 · doi:10.1088/1126-6708/2008/04/042
[23] DOI: 10.1007/s10714-007-0586-0 · Zbl 1140.83398 · doi:10.1007/s10714-007-0586-0
[24] DOI: 10.1103/PhysRevD.79.024012 · Zbl 1222.83113 · doi:10.1103/PhysRevD.79.024012
[25] DOI: 10.1007/s10714-010-0996-2 · Zbl 1213.83129 · doi:10.1007/s10714-010-0996-2
[26] Proceedings of the Royal Society A 353 (1975) pp 499– (1977)
[27] DOI: 10.1088/0034-4885/41/8/004 · doi:10.1088/0034-4885/41/8/004
[28] DOI: 10.1103/PhysRevD.50.6394 · doi:10.1103/PhysRevD.50.6394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.