×

Entanglement entropy in a holographic p-wave superconductor model. (English) Zbl 1328.82057

Summary: In a recent paper [the first three authors, J. High Energy Phys. 2014, No. 1, Papaer No. 032, 24 p. (2014; arxiv:1309.4877)], a holographic p-wave model has been proposed in an Einstein-Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the ”retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.

MSC:

82D55 Statistical mechanics of superconductors
81P40 Quantum coherence, entanglement, quantum correlations
94A17 Measures of information, entropy
83C22 Einstein-Maxwell equations
82B26 Phase transitions (general) in equilibrium statistical mechanics

References:

[1] Maldacena, J. M., The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.. Adv. Theor. Math. Phys., Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047
[2] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[3] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[4] Hartnoll, S. A., Lectures on holographic methods for condensed matter physics, Class. Quantum Gravity, 26, 224002 (2009) · Zbl 1181.83003
[5] Herzog, C. P., Lectures on holographic superfluidity and superconductivity, J. Phys. A, 42, 343001 (2009) · Zbl 1180.82218
[6] McGreevy, J., Holographic duality with a view toward many-body physics, Adv. High Energy Phys., 2010, 723105 (2010) · Zbl 1216.81118
[7] Horowitz, G. T., Introduction to holographic superconductors, Lect. Notes Phys., 828, 313 (2011) · Zbl 1246.83009
[8] Cai, R. G.; Li, L.; Li, L. F.; Yang, R. Q., Introduction to holographic superconductor models
[9] Cai, R. G.; He, S.; Li, L.; Li, L. F., A holographic study on vector condensate induced by a magnetic field, J. High Energy Phys., 1312, 036 (2013)
[10] Cai, R. G.; Li, L.; Li, L. F., A holographic P-wave superconductor model, J. High Energy Phys., 1401, 032 (2014)
[11] Cai, R.-G.; Li, L.; Li, L.-F.; Yang, R.-Q., Towards complete phase diagrams of a holographic p-wave superconductor model, J. High Energy Phys., 1404, 016 (2014)
[12] Gubser, S. S.; Pufu, S. S., The gravity dual of a p-wave superconductor, J. High Energy Phys., 0811, 033 (2008)
[13] Cai, R.-G.; Li, L.; Li, L.-F.; Wu, Y., Vector condensate and AdS soliton instability induced by a magnetic field, J. High Energy Phys., 1401, 045 (2014)
[14] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110
[15] Nishioka, T.; Ryu, S.; Takayanagi, T., Holographic entanglement entropy: an overview, J. Phys. A, 42, 504008 (2009) · Zbl 1179.81138
[16] Takayanagi, T., Entanglement entropy from a holographic viewpoint · Zbl 1247.83005
[17] Albash, T.; Johnson, C. V., Holographic studies of entanglement entropy in superconductors, J. High Energy Phys., 1205, 079 (2012)
[18] Cai, R.-G.; He, S.; Li, L.; Zhang, Y.-L., Holographic entanglement entropy on p-wave superconductor phase transition, J. High Energy Phys., 1207, 027 (2012)
[19] Arias, R. E.; Landea, I. S., Backreacting p-wave superconductors, J. High Energy Phys., 1301, 157 (2013)
[20] Peng, Y.; Pan, Q., Holographic entanglement entropy in general holographic superconductor models, J. High Energy Phys., 1406, 011 (2014)
[21] Yao, W.; Jing, J., Holographic entanglement entropy in metal/superconductor phase transition with Born-Infeld electrodynamics, Nucl. Phys. B, 889, 109 (2014) · Zbl 1326.82031
[22] Cai, R.-G.; He, S.; Li, L.; Zhang, Y.-L., Holographic entanglement entropy in insulator/superconductor transition, J. High Energy Phys., 1207, 088 (2012)
[23] Cai, R.-G.; He, S.; Li, L.; Li, L.-F., Entanglement entropy and Wilson loop in Stückelberg holographic insulator/superconductor model, J. High Energy Phys., 1210, 107 (2012)
[24] Yao, W.; Jing, J., Holographic entanglement entropy in insulator/superconductor transition with Born-Infeld electrodynamics, J. High Energy Phys., 1405, 058 (2014)
[25] Cai, R.-G.; Li, L.; Li, L.-F.; Su, R.-K., Entanglement entropy in holographic p-wave superconductor/insulator model, J. High Energy Phys., 1306, 063 (2013)
[26] Nishioka, T.; Takayanagi, T., AdS bubbles, entropy and closed string tachyons, J. High Energy Phys., 0701, 090 (2007)
[27] Klebanov, I. R.; Kutasov, D.; Murugan, A., Entanglement as a probe of confinement, Nucl. Phys. B, 796, 274 (2008) · Zbl 1219.81214
[28] Jacobson, T., Black hole entropy and induced gravity
[29] Kabat, D. N., Black hole entropy and entropy of entanglement, Nucl. Phys. B, 453, 281 (1995) · Zbl 0925.83036
[30] Solodukhin, S. N., Entanglement entropy of black holes and AdS/CFT correspondence, Phys. Rev. Lett., 97, 201601 (2006) · Zbl 1228.83150
[31] Emparan, R., Black hole entropy as entanglement entropy: a holographic derivation, J. High Energy Phys., 0606, 012 (2006)
[32] Cai, R. G.; Zhang, Y. Z., Black plane solutions in four-dimensional space-times, Phys. Rev. D, 54, 4891 (1996)
[33] Ammon, M.; Erdmenger, J.; Grass, V.; Kerner, P.; O’Bannon, A., On holographic p-wave superfluids with back-reaction, Phys. Lett. B, 686, 192 (2010)
[34] Maslov, V.-P., Zeroth-order phase transitions, Math. Notes - Ross. Akad., 76, 697 (2004) · Zbl 1125.82313
[35] Altamirano, N.; Kubiznak, D.; Mann, R. B., Reentrant phase transitions in rotating AdS black holes, Phys. Rev. D, 88, 101502 (2013)
[36] Gunasekaran, S.; Mann, R. B.; Kubiznak, D., Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, J. High Energy Phys., 1211, 110 (2012)
[37] Bah, I.; Faraggi, A.; Pando Zayas, L. A.; Terrero-Escalante, C. A., Holographic entanglement entropy and phase transitions at finite temperature, Int. J. Mod. Phys. A, 24, 2703 (2009) · Zbl 1167.83331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.