×

Discrete-time dynamic output feedback input shaping control of vibration in uncertain time-delay flexible structures. (English) Zbl 1328.70019

Summary: This paper proposes an observer-based discrete-time neuro-sliding mode control (NSMC) scheme combined with input shaping control for uncertain time-delay flexible structures. Only partial information of system states is known. It is shown that the proposed scheme not only guarantees closed-loop system stability, but also it effectively suppresses residual vibration and yields good robustness in the presence of state delays, input delays, parameter uncertainties, external disturbances and inaccurate impulse application instants simultaneously. The knowledge of upper bound of uncertainties is not required. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed control scheme.

MSC:

70Q05 Control of mechanical systems
74H45 Vibrations in dynamical problems in solid mechanics
93C95 Application models in control theory
Full Text: DOI

References:

[1] Singer, N. C.; Seering, W. P., Preshaping command inputs to reduce system vibration, ASME J. Dyn. Syst. Meas. Control, 112, 76-82 (1990)
[2] Miu, D. K.; Bhat, S. P., Minimum power and minimum jerk position control and its applications in computer disk drives, IEEE Trans. Magn., 27, 4471-4475 (1991)
[3] Singh, T.; Heppler, G. R., Shaped input control of a system with multiple modes, ASME J. Dyn. Syst. Meas. Control, 115, 341-347 (1993) · Zbl 0800.93167
[4] Tzes, A.; Yurkovich, S., An adaptive input shaping control scheme for suppression in slewing flexible structures, IEEE Trans. Control Syst. Technol., 1, 2, 114-121 (1993)
[6] Singhose, W. E.; Derezinski, S.; Singer, N. C., Extra-insensitive input shaper for controlling flexible spacecraft, J. Guidance Control Dyn., 19, 385-391 (1996)
[7] Gurleyuk, S. S.; Cinal, S., Robust three-impulse sequence input shaper design, J. Vibr. Control, 13, 12, 1807-1818 (2007) · Zbl 1182.74088
[8] Vaughan, J.; Yano, A.; Singhose, W. E., Robust negative input shapers for vibration suppression”, J. Dyn. Syst. Meas. Control, 131 (2009), 031014-031014-9
[9] Pereira, E.; Trapero, J. R.; Díaz, I. M.; Feliu, V., Adaptive input shaping for manoeuvring flexible structures using an algebraic identification technique, Automatica, 45, 4, 1046-1051 (2009) · Zbl 1162.93366
[10] Kang, C.-G., On the derivative constraints of input shaping control, J. Mech. Sci. Technol., 25, 2, 549-554 (2011)
[11] Rew, K.-H.; Ha, C.-W.; Kim, K.-S., An impulse-time perturbation approach for enhancing the robustness of extra-insensitive input shapers, Automatica, 49, 11, 3425-3431 (2013) · Zbl 1315.93031
[13] Vyhlídal, T.; Kučera, V.; Hromčík, M., Signal shaper with a distributed delay: spectral analysis and design, Automatica, 49, 3484-3489 (2013) · Zbl 1315.93033
[14] Kapila, V.; Tzes, A.; Yan, Q., Closed-loop input shaping for flexible structures using time-delay control, ASME J. Dyn. Syst. Meas. Control, 122, 454-460 (2000)
[15] Chang, P. J.; Park, J., A concurrent design of input shaping technique and a robust control for high-speed/high-precision control of a chip mounter, Control Eng. Pract., 9, 1279-1285 (2001)
[16] Cutforth, C. F.; Pao, L. Y., Adaptive input shaping for maneuvering flexible structures, Automatica, 40, 685-693 (2004) · Zbl 1050.93023
[17] Dharne, A. G.; Jayasuriya, S., Robust adaptive control of residual vibration in point-to-point motion of flexible bodies, J. Vibr. Control, 13, 7, 951-968 (2007) · Zbl 1182.74080
[19] Mahmoodi, S. N.; Craft, M. J.; Southward, S. C.; Ahmadian, M., Active vibration control using optimized modified acceleration feedback with adaptive line enhancer for frequency tracking, J. Sound Vibr., 330, 7, 1300-1311 (2011)
[20] Pai, M. C.; Sinha, A., Increasing robustness of input shaping method to parametric uncertainties and time-delays, ASME J. Dyn. Syst. Meas. Control, 133, 2 (2011), 021001-1-021001-8
[21] Pereira, E.; Trapero, J. R.; Díaz, I. M.; Feliu, V., Adaptive input shaping for single-link flexible manipulators using an algebraic identification, Control Eng. Pract., 20, 2, 138-147 (2012)
[23] Draženović, B., The invariance conditions in variable structure systems, Automatica, 5, 287-295 (1969) · Zbl 0182.48302
[24] Milosavljevic, D., General conditions for the existence of a quasi-sliding mode on the switching hyperplane in discrete variable structure systems, Autom. Remote Control, 46, 307-314 (1985) · Zbl 0583.93043
[25] Sarpturk, S. Z.; Istefanopulos, Y.; Kaynak, O., On the stability of discrete-time sliding mode control systems, IEEE Trans. Automat. Control, 32, 10, 930-937 (1987) · Zbl 0624.93054
[26] Gao, W. B.; Hung, Y.; Homaifa, A., Discrete-time variable structure control systems, IEEE Trans. Ind. Electr., 42, 2, 117-122 (1995)
[27] Yildiz, Y.; Sabanovic, A.; Abidi, K., Sliding-mode neuro-controller for uncertain systems, IEEE Trans. Ind. Electron., 54, 3, 1676-1685 (2007)
[28] Xia, Y.; Zhu, Z.; Li, C.; Yang, H.; Zhu, Q., Robust adaptive sliding mode control for uncertain discrete-time systems with time delay, J. Franklin Inst., 347, 1, 339-357 (2010) · Zbl 1298.93112
[29] Yang, H.; Xia, Y.; Shi, P., Observer-based sliding mode control for a class of discrete systems via delta operator approach, J. Franklin Inst., 347, 7, 1199-1213 (2010) · Zbl 1202.93066
[30] Pai, M. C., Discrete-time sliding mode control for uncertain systems with state and input delays, Int. J. Syst. Sci., 41, 12, 1501-1510 (2010) · Zbl 1206.93100
[31] Pai, M. C., Global synchronization of uncertain chaotic systems via discrete-time sliding mode control, Appl. Math. Comput., 227, 663-671 (2014) · Zbl 1364.93126
[32] Gao, L.; Wang, D.; Wu, Y., Non-fragile observer-based sliding mode control for Markovian jump systems with mixed mode-dependent time delays and input nonlinearity, Appl. Math. Comput., 229, 374-395 (2014) · Zbl 1364.93122
[33] Zhang, L. X.; Liu, X.; Zhu, Q., Adaptive chatter free sliding mode control for a class of uncertain chaotic systems, Appl. Math. Comput., 232, 431-435 (2014) · Zbl 1410.93101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.