×

Nonsmooth convex functionals and feeble viscosity solutions of singular Euler-Lagrange equations. (English) Zbl 1328.49011

Let \(\Omega\) be an open set. A nonnegative, convex function \(F=F(A)\) in \(C^2(\mathbb{R}^n\setminus {\mathcal K})\) with a closed set \({\mathcal K}\subsetneqq\mathbb{R}^n\) is considered. The author ascertains that local minimizers of \[ E(u,\Omega) := \int_{\Omega} F(Du), \quad \Omega \subseteq\mathbb{R}^n, \tag{1} \] in \((C^0\cap W_{\text{loc}}^{1,1})(\Omega) \) are “very weak” viscosity solutions on \(\Omega\) in the sense of [P. Juutinen and P. Lindqvist, Commun. Partial Differ. Equations 30, No. 3, 305–321 (2005; Zbl 1115.35029)] of the highly singular expanded Euler-Lagrange equation of (1): \[ F_{AA}(Du) : D^2u = 0.\tag{2} \] Moreover, if in addition \(F\) satisfies one of the three conditions given in the paper then feeble viscosity solutions of (2) on \(\Omega\), which are in \(W_{\text{loc}}^{1,1}(\Omega) \), are continuous weak solutions of the equation \[ \text{Div} (F_A(Du)) = 0. \]

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
35D40 Viscosity solutions to PDEs
35D30 Weak solutions to PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian

Citations:

Zbl 1115.35029

References:

[1] Barron, N., Jensen, R.: Minimizing the \[L\infty\] L∞ norm of the gradient with an energy constraint. Commun. PDE 30, 1741-1772 (2005) · Zbl 1105.35028 · doi:10.1080/03605300500299976
[2] Colombo, M., Figalli, A.: Regularity results for very degenerate elliptic equations. J. Math. Pures Appl. 101(1), 94-117 (2014) · Zbl 1282.35175 · doi:10.1016/j.matpur.2013.05.005
[3] Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of 2nd order partial differential equations. Bull. AMS 27(1), 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[4] Dacorogna, B.: Direct methods in the calculus of variations. In: Applied Mathematical Sciences, vol. 78, 2nd edn. Springer, New York (2008) · Zbl 1140.49001
[5] Danskin, J.M.: The theory of min-max with application. SIAM J. Appl. Math. 14, 641-664 (1966) · Zbl 0144.43301 · doi:10.1137/0114053
[6] Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, USA (1992) · Zbl 0804.28001
[7] Giga, M.H., Giga, Y.: Evolving graphs by singular weighted curvature. Arch. Ration. Mech. Anal. 141(2), 117-198 (1998) · Zbl 0896.35069 · doi:10.1007/s002050050075
[8] Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, New York (1998) · Zbl 1042.35002
[9] Ishii, H.: On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions. Funkcialaj Ekvacioj 38, 101-120 (1995) · Zbl 0833.35053
[10] Ishii, H., Ramaswamy, M.: Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients. Commun. Partial Differ. Equ. 20, 2187-2213 (1995) · Zbl 0842.35019 · doi:10.1080/03605309508821168
[11] Ishii, H., Souganidis, P.: Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor. Tohoku Math. J. 47, 227-250 (1995) · Zbl 0837.35066 · doi:10.2748/tmj/1178225593
[12] Julin, V., Juutinen, P.: A new proof for the equivalence of weak and viscosity solutions for the \[p\] p-Laplace equation. Commun. PDE 37(5), 934-946 (2012) · Zbl 1260.35069 · doi:10.1080/03605302.2011.615878
[13] Juutinen, P., Lindqvist, P.: Removability of a level set for solutions of quasilinear equations. Commun. PDE 30(3), 305-321 (2005) · Zbl 1115.35029 · doi:10.1081/PDE-200050030
[14] Juutinen, P., Lindqvist, P., Manfedi, J.J.: On the equivalence of viscosity solutions and weak solutions for a quasilinear equation. SIAM J. Math. Anal. 33, 699-717 (2001) · Zbl 0997.35022 · doi:10.1137/S0036141000372179
[15] Juutinen, P., Lukkari, T., Parviainen, M.: Equivalence of viscosity and weak solutions for the \[p(x)\] p(x)-Laplacian. Ann. de l’Institut Henri Poincare (C) Non Linear Anal. 27(6), 1471-1487 (2010) · Zbl 1205.35136 · doi:10.1016/j.anihpc.2010.09.004
[16] Lindqvist, P.: On the notion and properties of \[p\] p-superharmonic functions. J. Reine Angew. Math. 365, 67-79 (1986) · Zbl 0572.31004
[17] Schirotzek, W.: Nonsmooth analysis. In: Universitext. Springer, New York (2007) · Zbl 1120.49001
[18] Santambrogio, F., Vespri, V.: Continuity in two dimensions for a very degenerate elliptic equation. Nonlinear Anal. TMA 73(12), 3832-3841 (2010) · Zbl 1202.35107 · doi:10.1016/j.na.2010.08.008
[19] Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58(1), 133-154 (2014) · Zbl 1292.35315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.