×

Stability analysis and control of a class of LPV systems with piecewise constant parameters. (English) Zbl 1327.93323

Summary: Stability criteria characterizing the asymptotic stability of a class of LPV systems with piecewise constant parameters under constant and minimum dwell-time are derived. It is shown that, for such systems, the conditions for the stability under minimum dwell-time can be seen as a unifying stability concept lying in between quadratic and robust stability, thereby including them as extremal cases. The results are then extended to address the stabilization problem using a particular class of time-dependent gain-scheduled state-feedback controllers. Several examples are given for illustration.

MSC:

93D20 Asymptotic stability in control theory
93C05 Linear systems in control theory
93D09 Robust stability
Full Text: DOI

References:

[1] (Mohammadpour, J.; Scherer, C. W., Control of Linear Parameter Varying Systems with Applications (2012), Springer: Springer New York, USA)
[2] Briat, C., Linear parameter-varying and time-delay systems—analysis, observation, filtering & control, (Ser. Advances on Delays and Dynamics, vol. 3 (2015), Springer-Verlag: Springer-Verlag Heidelberg, Germany) · Zbl 1395.93003
[3] Savaresi, S. M.; Poussot-Vassal, C.; Spelta, C.; Sename, O.; Dugard, L., Semi-Active Suspension Control Design for Vehicles (2010), Butterworth Heinemann
[4] (Sename, O.; Gáspár, P.; Bokor, J., Robust Control and Linear Parameter Varying Approaches—Application to Vehicle Dynamics (2013), Springer: Springer Berlin Heidelberg)
[5] Gilbert, W.; Henrion, D.; Bernussou, J.; Boyer, D., Polynomial LPV synthesis applied to turbofan engines, Control Eng. Pract. (2008)
[6] Robert, D.; Sename, O.; Simon, D., An \(H_\infty\) LPV design for sampling varying controllers: Experimentation with a T-inverted pendulum, IEEE Trans. Control Syst. Technol., 18, 3, 741-749 (2010)
[7] Kajiwara, H.; Apkarian, P.; Gahinet, P., LPV techniques for control of an inverted pendulum, IEEE Control Syst. Mag., 19, 44-54 (1999)
[8] Barker, J. M.; Balas, G. J., Comparing linear parameter-varying gain-scheduled control techniques for active flutter suppression, J. Guid. Control Dyn., 23, 5, 948-955 (2000)
[9] Shin, J.-Y.; Balas, G. J., \(H_\infty\) control of the V132 X-38 lateral-directional axis, (American Control Conference (2000), Illinois: Illinois Chicago), 1862-1866
[10] Shamma, J. S., Analysis and design of gain-scheduled control systems (1988), Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, (Ph.D. dissertation)
[11] Shamma, J. S.; Athans, M., Gain scheduling: potential hazards and possible remedies, IEEE Contr. Syst. Magazine, 12, 3, 101-107 (1992)
[12] Packard, A., Gain scheduling via linear fractional transformations, Systems Control Lett., 22, 79-92 (1994) · Zbl 0792.93043
[13] Apkarian, P.; Gahinet, P.; Becker, G., Self-scheduled control of linear parameter varying systems: A design example, Automatica, 31, 9, 1251-1261 (1995) · Zbl 0825.93169
[14] Apkarian, P.; Gahinet, P., A convex characterization of gain-scheduled \(H_\infty\) controllers, IEEE Trans. Automat. Control, 5, 853-864 (1995) · Zbl 0826.93028
[15] Apkarian, P.; Adams, R. J., Advanced gain-scheduling techniques for uncertain systems, IEEE Trans. Control Syst. Technol., 6, 21-32 (1998)
[16] Wu, F., A generalized LPV system analysis and control synthesis framework, Internat. J. Control, 74, 745-759 (2001) · Zbl 1011.93046
[17] Wu, F.; Dong, K., Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions, Automatica, 42, 39-50 (2006) · Zbl 1121.93067
[18] Scherer, C. W., LPV control and full-block multipliers, Automatica, 37, 361-375 (2001) · Zbl 0982.93060
[19] Scherer, C. W.; Köse, I. E., Gain-scheduled control synthesis using dynamic d-Scales, IEEE Trans. Automat. Control, 57, 9, 2219-2234 (2012) · Zbl 1369.93199
[20] Chesi, G.; Garulli, A.; Tesi, A.; Vicino, A., Homogeneous polynomial forms for robustness analysis of uncertain systems, (Ser. Lecture Notes in Control and Information Sciences (2009), Springer-Verlag: Springer-Verlag Berlin Heidelberg) · Zbl 1218.93002
[21] Xie, L.; Shishkin, S.; Fu, M., Piecewise Lyapunov functions for robust stability of linear time-varying systems, Systems Control Lett., 31, 3, 165-171 (1997) · Zbl 0901.93063
[22] Molchanov, A. P.; Pyatnitskiy, Y. S., Criteria of asymptotic stability of differential and difference inclusions encountered in control theory, Systems Control Lett., 13, 59-64 (1989) · Zbl 0684.93065
[23] Blanchini, F.; Miani, S., A new class of universal Lyapunov functions for the control of uncertain linear systems, IEEE Trans. Automat. Control, 44, 3, 641-647 (1999) · Zbl 0962.93081
[24] Tan, K.; Grigoriadis, K. M.; Wu, F., Output-feedback control of LPV sampled-data systems, Internat. J. Control, 75, 4, 252-264 (2002) · Zbl 1012.93039
[25] Joo, H.; Kim, S. H., \(h\) LPV control with pole placement constraints for synchronous buck converters with piecewise-constant loads, Math. Probl. Eng. (2014), in press
[26] Morse, A. S., Supervisory control of families of linear set-point controllers—part 1: exact matching, IEEE Trans. Automat. Control, 41, 10, 1413-1431 (1996) · Zbl 0872.93009
[27] Hespanha, J. P.; Morse, A. S., Stability of switched systems with average dwell-time, (38th Conference on Decision and Control (1999), Phoenix: Phoenix Arizona, USA), 2655-2660
[28] Liberzon, D., Switching in Systems and Control (2003), Birkhäuser · Zbl 1036.93001
[29] Geromel, J. C.; Colaneri, P., Stability and stabilization of continuous-time switched linear systems, SIAM J. Control Optim., 45, 5, 1915-1930 (2006) · Zbl 1130.34030
[30] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems, IEEE Contr. Syst. Magazine, 29, 2, 28-93 (2009) · Zbl 1395.93001
[31] Briat, C.; Seuret, A., A looped-functional approach for robust stability analysis of linear impulsive systems, Systems Control Lett., 61, 10, 980-988 (2012) · Zbl 1270.93084
[32] Briat, C., Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints, Automatica, 49, 11, 3449-3457 (2013) · Zbl 1315.93058
[33] Briat, C.; Seuret, A., Convex dwell-time characterizations for uncertain linear impulsive systems, IEEE Trans. Automat. Control, 57, 12, 3241-3246 (2012) · Zbl 1369.34075
[34] Briat, C.; Seuret, A., Affine minimal and mode-dependent dwell-time characterization for uncertain switched linear systems, IEEE Trans. Automat. Control, 58, 5, 1304-1310 (2013) · Zbl 1369.93522
[35] Briat, C., Convex lifted conditions for robust \(\ell_2\)-stability analysis and \(\ell_2\)-stabilization of linear discrete-time switched systems with minimum dwell-time constraint, Automatica, 50, 3, 976-983 (2014) · Zbl 1298.93284
[36] Briat, C., Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time, Systems Control Lett., 78, 63-72 (2015) · Zbl 1320.93064
[37] Parrilo, P., Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization (2000), California Institute of Technology: California Institute of Technology Pasadena, California, (Ph.D. dissertation)
[39] Scherer, C. W.; Hol, C. W.J., Matrix sum-of-squares relaxations for robust semi-definite programs, Math. Program. B, 107, 189-211 (2006) · Zbl 1134.90033
[40] Wu, F.; Prajna, S., SOS-based solution approach to polynomial LPV system analysis and synthesis problems, Internat. J. Control, 78, 8, 600-611 (2005) · Zbl 1125.93353
[41] Papachristodoulou, A.; Papageorgiou, C., Robust stability and performance analysis of a longitudinal aircraft model using sum of squares techniques, (13th Mediterranean Conference on Control and Automation (2005), Cyprus: Cyprus Limassol), 1275-1280
[42] Dietz, S. G., Analysis and control of uncertain systems by using robust semi-definite programming (2008), T/U Delft, (Ph.D. dissertation)
[43] Wu, F., Control of linear parameter varying systems (1995), University of California Berkeley, (Ph.D. dissertation)
[44] Tempo, R.; Calafiore, G.; Dabbene, F., Randomized Algorithms for Analysis and Control of Uncertain Systems (2005), Springer-Verlag: Springer-Verlag London, UK · Zbl 1079.93002
[45] Allerhand, L. I.; Shaked, U., Robust stability and stabilization of linear switched systems with dwell time, IEEE Trans. Automat. Control, 56, 2, 381-386 (2011) · Zbl 1368.93487
[46] Sturm, J. F., Using SEDUMI 1. 02, a Matlab toolbox for optimization over symmetric cones, Optim. Methods Softw., 11, 12, 625-653 (2001) · Zbl 0973.90526
[48] Putinar, M., Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., 42, 3, 969-984 (1993) · Zbl 0796.12002
[49] Gahinet, P.; Apkarian, P., A linear matrix inequality approach to \(H_\infty\) control, Int. J. Robust Nonlinear Control, 4, 421-448 (1994) · Zbl 0808.93024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.