×

Reduced-order models for nonlinear vibrations, based on natural modes: the case of the circular cylindrical shell. (English) Zbl 1327.74073

Summary: Reduced-order models are essential to study nonlinear vibrations of structures and structural components. The natural mode discretization is based on a two-step analysis. In the first step, the natural modes of the structure are obtained. Because this is a linear analysis, the structure can be discretized with a very large number of degrees of freedom. Then, in the second step, a small number of these natural modes are used to discretize the nonlinear vibration problem with a huge reduction in the number of degrees of freedom. This study finds a recipe to select the natural modes that must be retained to study nonlinear vibrations of an angle-ply laminated circular cylindrical shell that the author has previously studied by using admissible functions defined on the whole structure, so that an accuracy analysis is performed. The higher-order shear deformation theory developed by Amabili and Reddy is used to model the shell.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
Full Text: DOI

References:

[1] Rosenberg, RM: On non-linear vibrations of systems with many degrees of freedom. Adv. Appl. Mech., 9, 155-242, (1966) · doi:10.1016/S0065-2156(08)70008-5
[2] Mikhlin, YV: Matching of local expansions in the theory of non-linear vibrations. J. Sound Vib., 182, 577-588, (1995) · Zbl 1237.70113 · doi:10.1006/jsvi.1995.0218
[3] Shaw, S; Pierre, C: Non-linear normal modes and invariant manifolds. J. Sound Vib., 150, 170-173, (1991) · doi:10.1016/0022-460X(91)90412-D
[4] Jézéquel, L; Lamarque, CH: Analysis of non-linear dynamical systems by the normal form theory. J. Sound Vib., 149, 429-459, (1991) · doi:10.1016/0022-460X(91)90446-Q
[5] Touzé, C; Amabili, M: Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures. J. Sound Vib., 298, 958-981, (2006) · doi:10.1016/j.jsv.2006.06.032
[6] Dowell, EH: Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system. J. Sound Vib., 85, 333-344, (1982) · doi:10.1016/0022-460X(82)90259-0
[7] Gonçalves, PB; Batista, RC: Non-linear vibration analysis of fluid-filled cylindrical shells. J. Sound Vib., 127, 133-143, (1988) · Zbl 1235.74031 · doi:10.1016/0022-460X(88)90354-9
[8] Popov, AA; Thompson, JMT; McRobie, FA: Low dimensional models of shell vibrations. Parametrically excited vibrations of cylindrical shells. J. Sound Vib., 209, 163-186, (1998) · doi:10.1006/jsvi.1997.1279
[9] Amabili, M: Comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. J. Sound Vib., 264, 1091-1125, (2003) · doi:10.1016/S0022-460X(02)01385-8
[10] Zahorian, SA; Rothenberg, M: Principal component analysis for low-redundancy encoding of speech spectra. J. Acoust. Soc. Am., 69, 519-524, (1981) · doi:10.1121/1.385539
[11] Aubry, N; Holmes, P; Lumley, JL; Stone, E: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid. Mech., 192, 115-173, (1988) · Zbl 0643.76066 · doi:10.1017/S0022112088001818
[12] Sirovich, L: Turbulence and dynamics of coherent structures. I. Coherent structures. Q. Appl. Math., 45, 561-571, (1987) · Zbl 0676.76047
[13] Amabili, M; Sarkar, A; Païdoussis, MP: Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method. J. Fluids Struct., 18, 227-250, (2003) · doi:10.1016/j.jfluidstructs.2003.06.002
[14] Kerschen, G; Golinval, J-C; Vakakis, AF; Bergman, LA: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn., 41, 147-169, (2005) · Zbl 1103.70011 · doi:10.1007/s11071-005-2803-2
[15] McEwan, MI; Wright, JR; Cooper, JE; Leung, AYT: A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation. J. Sound Vib., 243, 601-624, (2001) · doi:10.1006/jsvi.2000.3434
[16] Muravyov, AA; Rizzi, SA: Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures. Comp. Struct., 81, 1513-1523, (2004) · doi:10.1016/S0045-7949(03)00145-7
[17] Mignolet, MP; Soize, C: Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems. Comp. Methods Appl. Mech. Eng., 197, 3951-3963, (2008) · Zbl 1194.74154 · doi:10.1016/j.cma.2008.03.032
[18] Kurylov, Y; Amabili, M: Nonlinear vibrations of clamped-free circular cylindrical shells. J. Sound Vib., 330, 5363-5381, (2011) · doi:10.1016/j.jsv.2011.05.037
[19] Lazarus, A; Thomas, O; Deü, J-F: Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with application to NEMS. Finite Elements Anal. Des., 49, 35-51, (2012) · doi:10.1016/j.finel.2011.08.019
[20] Amabili, M; Touzé, C: Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: comparison of POD and asymptotic nonlinear normal modes methods. J. Fluids Struct., 23, 885-903, (2007) · doi:10.1016/j.jfluidstructs.2006.12.004
[21] Amabili, M: Nonlinear vibrations of angle-ply laminated circular cylindrical shells: skewed modes. Compos. Struct., 94, 3697-3709, (2012) · doi:10.1016/j.compstruct.2012.05.019
[22] Ganapathi, M; Varadan, TK: Nonlinear free flexural vibrations of laminated circular cylindrical shells. Compos. Struct., 30, 33-49, (1995) · doi:10.1016/0263-8223(94)00025-5
[23] Jansen, EL: The effect of static loading and imperfections on the nonlinear vibrations of laminated cylindrical shells. J. Sound Vib., 315, 1035-1046, (2008) · doi:10.1016/j.jsv.2008.02.004
[24] Ribeiro, P: On the influence of membrane inertia and shear deformation on the geometrically non-linear vibrations of open, cylindrical, laminated clamped shells. Compos. Sci. Technol., 69, 176-185, (2009) · doi:10.1016/j.compscitech.2008.09.038
[25] Amabili, M: Nonlinear vibrations of laminated circular cylindrical shells: comparison of different shell theories. Compos. Struct., 94, 207-220, (2011) · doi:10.1016/j.compstruct.2011.07.001
[26] Amabili, M; Reddy, JN: A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. Int. J. Non-linear Mech., 45, 409-418, (2010) · doi:10.1016/j.ijnonlinmec.2009.12.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.