×

Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces. (English) Zbl 1327.46041

The authors obtain global characterizations of the spaces of Gevrey ultradifferentiable functions or ultradistributions on a compact Lie group using the eigenvalues of the Laplace-Beltrami operator. Both the Roumieu and Beurling cases are considered. The paper also includes the corresponding characterizations on compact homogeneous spaces. To illustrate the type of obtained results we include below one of the main theorems. To this end some notation is needed.
Let \(X_1,\ldots, X_n\) be a basis of the Lie algebra of \(G\). For a multi-index \(\alpha = (\alpha_1,\ldots,\alpha_n)\) we denote by \(\partial^\alpha\) the composition of left-invariant derivatives with respect to \(X_1,\ldots,X_n\) such that each \(X_k\) enters exactly \(\alpha_k\) times. Then the Gevrey-Roumieu class \(\gamma_s(G)\) (\(s > 0\)) consists of those functions \(\phi\in C^\infty(G)\) for which there exist constants \(A > 0\) and \(C > 0\) such that \[ \sup_{x\in G}\left|\partial^\alpha\phi(x)\right|\leq CA^{|\alpha|}(\alpha!)^s. \] Theorem 2.3 (a) proves that \(\phi\in\gamma_s(G)\) if, and only if, there exist \(B > 0\) and \(K > 0\) such that \[ \parallel\widehat{\phi}(\xi)\parallel_{HS}\leq K e^{-B\left(1+\lambda^2_{[\xi]}\right)^{\frac{1}{2s}}} \] for all \(\xi\in\widehat{G}\). Here, \(\widehat{G}\) denote the set of (equivalent classes of) continuous irreducible unitary representations of G and \(\widehat{\phi}(\xi) = \int_G\phi(x)\xi(x)^\ast\;dx\), where \(dx\) is the normalized Haar measure of \(G\) and \(\xi:G\to {\mathbb C}^{d_\xi}\times {\mathbb C}^{d_\xi}\). The matrix elements of \(\xi\) are the eigenfunctions for the Laplace-Beltrami operator with eigenvalue \(-\lambda^2_{[\xi]}\).

MSC:

46F05 Topological linear spaces of test functions, distributions and ultradistributions
22E30 Analysis on real and complex Lie groups

References:

[1] Bronshtein, M. D., Trans. Mosc. Math. Soc., 1, 87-103 (1982) · Zbl 0484.35056
[2] Bruhat, F., Lectures on Lie Groups and Representations of Locally Compact Groups (1968), Tata Institute of Fundamental Research: Tata Institute of Fundamental Research Bombay · Zbl 0246.22008
[3] Cerezo, A.; Rouvière, F., Solution élémentaire d’un opérateur différentiel linéaire invariant à gauche sur un groupe de Lie réel compact et sur un espace homogène réductif compact, Ann. Sci. Éc. Norm. Super., 2, 561-581 (1969) · Zbl 0191.43801
[4] Dickinson, D.; Gramchev, T.; Yoshino, M., Perturbations of vector fields on tori: resonant normal forms and Diophantine phenomena, Proc. Edinb. Math. Soc., 45, 731-759 (2002) · Zbl 1032.37010
[5] Garetto, C.; Ruzhansky, M., On the well-posedness of weakly hyperbolic equations with time dependent coefficients, J. Differ. Equ., 253, 1317-1340 (2012) · Zbl 1259.35133
[6] Faraut, J., Analysis on Lie Groups. An Introduction (2008), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1147.22001
[7] Gröchenig, K.; Zimmermann, G., Spaces of test functions via the STFT, J. Funct. Spaces Appl., 2, 25-53 (2004) · Zbl 1069.46021
[8] Komatsu, H., Ultradistributions, III, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., 29, 653-718 (1982) · Zbl 0507.46035
[9] Köthe, G., Topological Vector Spaces. I (1969), Springer · Zbl 0179.17001
[10] Nishitani, T., Sur les équations hyperboliques à coefficients höldériens en \(t\) et de classe de Gevrey en \(x\), Bull. Sci. Math., 107, 113-138 (1983) · Zbl 0536.35042
[12] Ruckle, W. H., Sequence Spaces (1981), Pitman · Zbl 0491.46007
[13] Ruzhansky, M.; Turunen, V., Pseudo-Differential Operators and Symmetries (2010), Birkhäuser: Birkhäuser Basel · Zbl 1193.35261
[14] Ruzhansky, M.; Turunen, V., Global quantization of pseudo-differential operators on compact Lie groups, SU(2) and 3-sphere, Int. Math. Res. Not., 11, 2439-2496 (2013) · Zbl 1317.22007
[15] Seeley, R. T., Eigenfunction expansions of analytic functions, Proc. Am. Math. Soc., 21, 734-738 (1969) · Zbl 0183.10102
[16] Stein, E. M., Topics in Harmonic Analysis Related to the Littlewood-Paley Theory (1970), Princeton University Press: Princeton University Press Princeton · Zbl 0193.10502
[17] Taguchi, Y., Fourier coefficients of periodic functions of Gevrey classes and ultradistributions, Yokohama Math. J., 35, 51-60 (1987) · Zbl 0649.46039
[18] Toft, J., The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., 3, 145-227 (2012) · Zbl 1257.42033
[19] Vilenkin, N. Ja.; Klimyk, A. U., Representation of Lie Groups and Special Functions. Vol. 1. Simplest Lie Groups, Special Functions and Integral Transforms (1991), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht · Zbl 0742.22001
[20] Wallach, N., Harmonic Analysis on Homogeneous Spaces (1973), Marcel Dekker: Marcel Dekker New York · Zbl 0265.22022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.